Monterey Equity Pty Ltd

C/- Donald Cant Watts Cork

ENVIRONMENTAL

WATER

WASTEWATER

GEOTECHNICAL

CIVIL

PROJECT MANAGEMENT

Contamination Assessment: Lot 2, DP857520, 119 Barton Street, Monterey, NSW

P1706332JR01V01 March 2018

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to provide a Contamination Assessment at the subject site in accordance with the scope of services set out in the contract / quotation between Martens & Associates Pty Ltd and Monterey Equity Pty Ltd C/- Donald Cant Watts Cork (hereafter known as the Client).

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources which may include for example site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

© March 2018 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890

Phone: +61-2-9476-9999

Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

	Document and Distribution Status							
Author(s)		Reviewer(s)		Project Manager		Signature		
Robert Mehaffey		Gray Taylor Andrew Norris		Gray Taylor		Wyray Tagh.		
		Document Location						
Revision No.	Status	Release Date	File Copy	Monterey Equity Pty Ltd	Donald Cant Watts Cork	-	,	-
1	Draft	05.03.2018	1E, 1P	1P	1P			
1	Final	13.03.2018	1E, 1P	1P	1P			

Distribution Types: F = Fax, H = hard copy, P = PDF document, E = Other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.

Contents

1 (OVERVIEW	6
1.1	Introduction	ć
1.2	Objectives	ć
1.3	Project Scope	ć
1.4	Abbreviations	7
2 9	SITE DESCRIPTION	9
2.1	Site Location and Existing Land Use	9
2.2	Hydrogeology	10
3 9	SITE BACKGROUND ASSESSMENT	11
3.1	Historical Site Records Review	11
3.2	NSW EPA Records	11
3.3	Historical Aerial Photograph Review	12
3.4	Walkover Site Inspection	12
4 F	POTENTIAL FOR CONTAMINATION	14
4.1	Areas of Environmental Concern/Contaminants of Potential Concern	14
4.2	Sensitive Receptors and Exposure Pathways	14
4.3	Preliminary site investigation conclusions	15
5 5	SITE SAMPLING OVERVIEW	16
5.1	Objectives	16
5.2	Reference Guidelines	16
6 5	SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)	17
6.1	Data Quality Objectives (DQO)	17
6.2	Data Quality Indicators (DQI)	18
6.3	Investigation and Sampling Methodology and Quality Assurance / Qua Control	lity 19
6.4	Laboratory Analytical Suite	20
7 \$	SITE ASSESSMENT CRITERIA	21
7.1	Overview	21
7.2	Adopted EILs	22
8 L	ABORATORY ANALYTICAL RESULTS	23
9 [DISCUSSIONS	25
9.1	Samples Exceeding SAC	25
9.2	95% UCL Analysis	25
9.3	Data Gaps	26
9.4	Acid Sulphate Soils (ASS)	26
10 (CONCLUSION AND DISCUSSIONS	27
11 L	IMITATIONS STATEMENT	28

REFERENCES	29
12 ATTACHMENT A - HISTORIC AERIAL PHOTOGRAPHS AND SITE LOCATION	30
13 ATTACHMENT B - BAYSIDE COUNCIL CORRESPONDENCE	37
14 ATTACHMENT C - AEC MAP	39
15 ATTACHMENT D - SAMPLING PLAN	41
16 ATTACHMENT E – BOREHOLE LOGS	43
17 ATTACHMENT F - DATA VALIDATION REPORT	54
18 ATTACHMENT G - LABORATORY ANALYTICAL DOCUMENTATION	61
19 ATTACHMENT H - LABORATORY SUMMARY TABLES	104
20 ATTACHMENT I - IICI CALCIII ATIONS	108

1 Overview

1.1 Introduction

This report, prepared by Martens and Associates (MA), documents a contamination assessment which includes a preliminary site investigation (PSI) with limited testing to support a rezoning application to allow future residential subdivision of 119 Barton Street, Monterey, NSW ('the site').

The location of the site is shown in PS01-AZ06, Attachment A.

1.2 Objectives

Investigation objectives include:

- Identification of historic and current potentially contaminating site activities.
- Evaluation of areas of environmental concern (AEC) and associated contaminants of potential concern (COPC) within investigation area.
- Assess identified AECs and associated COPCs.
- Assess potential sources of site contamination identified in the preliminary investigation.
- Provide comment on suitability of investigation area for future development use, and where required, provide recommendations for remediation.

1.3 Project Scope

Scope of work included:

- Site walkover inspection to assess existing land condition and potential for site contamination.
- o Review of 6 historical aerial photographs to assess past land use.
- Review of relevant Bayside Council historical database data (eg. BCC DA/BA history).

- Review of other relevant databases (SafeWork NSW and NSW EPA).
- o Identification of AECs & COPCs.
- Conduct soil sampling in AECs. Sampling undertaken in general accordance with NSW EPA (1995) Site Sampling Guidelines. Investigations completed using hand methods (for surface samples) and hydraulic drill rig and push tube (for boreholes).
- Laboratory testing of soil contaminants of potential concern (COPC) within each AEC. For QA/QC purposes, duplicates and trip spike/blank samples were collected and analysed.
- Findings of the intrusive soil investigation documented in general accordance with NSW OEH (2011) and NEPM (1999, amended 2013).

1.4 Abbreviations

AEC - Area of environmental concern

ASC NEPM – Assessment of site contamination (National Environmental Protection Measure)

BA - Building application

BC - Bayside Council

BTEXN - Benzene, toluene, ethyl benzene, xylene and naphthalene

COPC - Contaminants of potential concern

DA – Development application

DEC – NSW Department of Environment and Conservation

DP – Deposited Plan

DPI – NSW Department of Primary Industries

DQI – Data quality indicators

DQO - Data quality objective

EIL – Ecological Investigation Levels

EPA - NSW Environment Protection Authority

EQL – Estimated quantitation limit

ESL - Ecological Screening Levels

HIL – Health investigation level

HM – Heavy metal

HSL - Health screening level

LGA – Local government area

MA – Martens and Associates Pty Ltd

mAHD – Metres Australian height datum

NATA – National Association of Testing Authorities

OCP - Organochloride pesticides

OEH - NSW Office of Environment and Heritage

OPP - Organophosphate pesticides

PAH – Polycyclic aromatic hydrocarbons

PSI – Preliminary site investigation

RPD – Relative percentage difference – difference between two values divided by the average

SAC - Site acceptance criteria

SAQP – Sampling analytical and quality plan

SOP – Standard operating procedure

TRH – Total recoverable hydrocarbons

2 Site Description

2.1 Site Location and Existing Land Use

Site information is summarised in Table 1, and site location and general surrounds shown in PS01-AZ06, Attachment A.

Table 1: Site background information.

Description / Detail 119 Barton Street, Monterey, NSW (Lot 2, DP857520) – 7,202 m² (Approx.)
· · · · · · · · · · · · · · · · · · ·
(Approx.)
Bayside Council (BC)
Site is currently a recreational bowling green, club house and carpark.
Residential.
The lot currently has two bowling greens, a bowling club in the southern portion of the site and a carpark in the northeast portion of the site.
The site is bordered by Barton Street to the north and residential properties to the east, south and west.
Site is generally flat. Site elevations range from approximately 6 mAHD in the northeast corner of the site to approximately 5 mAHD in the western border of the site.
The Sydney 1:100,000 Geological Series Sheet 9130 (1983) indicates that the site is underlain by quaternary deposits comprised of quartz sand, minor shell content, interdune (swale) silt and fine sand. The NSW Environment and Heritage eSPADE website identifies the site as having soils of the Tuggerah soil landscape, consisting of deep (>200 cm) podzols on dunes and podzols/humus podzol intergrades on swales.
A stormwater planning assessment completed by ADG Engineers Australia Pty Ltd (2016) concluded that all stormwater runoff generated at the site is contained within the site boundaries and is discharged via infiltration into sandy soils.
Future site residents and visitors. Site workers during future construction works. Surrounding residential site occupants.
THE SET OF STATES TO COMPANY

2.2 Hydrogeology

Review of the NSW Department of Primary Industries (DPI) Water's database provided the following information for the five closest groundwater bores (with relevant information) to the site (Table 2).

Table 2: Available hydrogeological information.

Groundwater Bore Identification	Direction and Distance	Standing Water Level (m)	Intended Use	Water Bearing Zone Substrate
GW100520	On site	NE ¹ (7 mBGL)	Recreation	ND ²
GW106456	Approximately 15 m south	NE ¹ (6 mBGL)	Domestic	ND^2
GW108549	Approximately 10 m east	5.0 mBGL	Domestic	Sand
GW108550	Approximately 10 m east	5.0 mBGL	Domestic	Sand
GW108652	Approximately 15 m east	5.0 mBGL	Domestic	Sand

Notes

Borehole investigations undertaken by MA encountered groundwater at depths of 1.4-3.0 mBGL.

In consideration of hydrogeological information at the site, it is unlikely that groundwater is a significant potential contamination pathway.

¹ NE – Groundwater not encountered (maximum depth of well).

² ND – No data available.

3 Site Background Assessment

3.1 Historical Site Records Review

Four records exist at Bayside Council (BC) for development applications and building plans at the site (Table 3). BC correspondence is provided in Attachment B.

Table 3: Site history information.

Year	Record No.	Description
1995	BA-1995/696	Construction of outbuilding shed.
1995	BA-1995/736	Building application for villas and townhouses (13 units).
1996	BA-1996/134	Club additions.
2008	DA-2008/195	Minor alterations to club,

3.2 NSW EPA Records

No notices for the suburb of Monterey or nearby suburbs were listed under the Contaminated Land Management Act (1997) or the Environmentally Hazardous Chemicals Act (1985).

One record within the Monterey area is identified on the list of NSW contaminated sites notified to the EPA (Table 4).

Table 4: Available EPA contaminated lands record information.

Suburb	Address	Details	Distance/ Orientation From Site
			Southwest,
Monterey/Kogarah	Scarborough Park South	Former landfill	approximately
			700 m

The above site is at a lower elevation than the subject site. Due to distance to the site and local hydrological characteristics, it is unlikely that the above site would have caused near surface soil contamination at the subject site.

3.3 Historical Aerial Photograph Review

Historical aerial photographs taken of the site during 1943, 1961, 1975, 1991, 2009 and 2018 were reviewed to investigate historic site land uses (Table 5). Copies of aerial photographs are provided in Attachment A. Photos indicate that the site may have used as a recreational bowling green since some time before 1961. Historical aerials did not indicate any other site use.

Table 5: Historic aerial photograph observations 1943 – 2018

Year	Site	Surrounding Land Use
1943	The site appears unused, a potential pond (approximately 1500 m²) is present in the eastern portion of the site. Rest of the site has scattered bushes and is undeveloped.	Residential properties to the north, east and south. Cleared, vacant land to the west and south east of the site.
1961	Site has been developed into bowling greens with bowling club in the southern portion of the site and carpark in the northern portion of the site.	Lot immediately east of the site is also being used as part of the bowling green development. Continued residential development in all directions.
1975	Little change from previous.	Little change from previous.
1991	Little change from previous.	Little change from previous.
2009	Bowling green area along the eastern boundary has been redeveloped into additional carpark space.	Lot immediately east of the site (previously part of the bowling green) has been redeveloped into residential housing.
2018	Little change from previous.	Little change from previous.

3.4 Walkover Site Inspection

Site walkover was conducted on 14 February, 2018 by an experienced MA environmental engineer in conjunction with PSI investigations. Observations are summarised below.

- Timber and brick clad bowling club along the southern boundary of the site.
- Asphalt driveway and carpark in the north and eastern portions of the site.
- o Two artificial turf bowling greens in the central portion of the site.

- Brick and galvanised metal sheds in the northern portion of the site, directly north of existing bowling greens.
- Stockpile of timber, plastic and glass immediately west of brick and galvanised sheds in the northern portion of the site.
- o Site likely filled for levelling purposes (primarily under bowling greens and carpark).

4 Potential for Contamination

4.1 Areas of Environmental Concern/Contaminants of Potential Concern

Our assessment of site AECs and COPCs (Table 6) for the investigation area is made on the basis of available site history, aerial photograph interpretation and site walkover. A map showing locations of identified AECs is provided in Attachment C.

Table 6: Areas of environmental concern and contaminants of potential concern.

AEC ¹	Potential for Contamination	COPC
AEC A – Existing bowling club	Pesticides and heavy metals may have been used underneath building for pest control. Building may include potential asbestos containing material (PACM) and/or lead based paints.	HM, OCP/OPP and asbestos.
AEC B – Former pond	Former site pond has been filled in for construction of bowling club and encountered during geotechnical investigations (Douglas Partners, 2016). Fill of unknown origin and quality has been used.	HM, TRH, BTEXN, PAH, OCP/OPP and asbestos.
AEC C (entire site) – Site filling	Fill of unknown origin and quality was, likely used for site levelling purposes. Fill of unknown origin and quality has been used.	HM, OCP/OPP.
AEC D – Bowling greens	Prior to construction of artificial turf bowling greens, herbicides and pesticides are likely to have been used.	HM, OCP/OPP.

Notes

4.2 Sensitive Receptors and Exposure Pathways

Table 7 provides a summary of identified sensitive receptors and potential exposure pathways connecting receptors to identified AECs and COPCs outlined in Table 6.

¹ Locations identified on AEC map in Attachment C.

Table 7: Summary of receptors and potential pathways.

	The state of the s			
		Receptor		Pathway
Hu	Jmar	Receptors:		
	0	Future site residents and visitors.	0	Dermal contact.
	0	Site workers during future construction works.	0	Oral ingestion of potentially contaminated soil.
	0	Surrounding residents.		
<u>Er</u>	nviron	mental Receptors		
	0	Monterey Park (approximately 400 m west).	0	Migration in contaminated runoff. Direct contact with site flora and fauna.
	0	Botany Bay (approximately 300 m east)	_ 0	Bilder de linder and radia.
	0	Existing site flora and fauna.		

4.3 Preliminary site investigation conclusions

Results of the site history review indicate that the site may have used as a recreational bowling club since some time before 1961. Historical information did not indicate any other site use. The following potential contamination sources are noted:

- Existing bowling club may have the potential to have introduced contaminants in the form of asbestos (as a construction material), pesticides (pest control), hydrocarbon (fuels and oils) and heavy metals (paints, pest control).
- Fill used across the site for levelling purposes and to fill the former pond is of unknown origin and quantity and may contain contaminants.

Overall, the investigation area is considered to have a medium risk of contamination and poses a potential risk of harm to human health and environment under proposed development conditions. As a result, assessment of the identified AECs was undertaken and a summary of results is outlined in the following sections.

5 Site Sampling Overview

5.1 Objectives

The sampling plan's development was guided by NSW EPA (1995) Sampling Design Guidelines and a risk based assessment. Assessment addressed each of the identified AEC and associated COPCs identified in Table 6. Results of the site testing were assessed against site acceptance criteria (SAC) developed with reference to ASC NEPM (1999, amended 2013).

The objective of site sampling is to assess the COPC (Section 4.1) and determine suitability for the proposed subdivision.

The soil sampling and borehole location map is shown in Attachment D. Borehole logs are provided in Attachment E.

5.2 Reference Guidelines

This assessment is prepared in general accordance with the following guidelines:

- o ASC NEPC (1999, amended 2013) National Environmental Protection Measure, (NEPM 1999, amended 2013).
- o NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW EPA (1995) Sampling Design Guidelines.
- NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.

6 Sampling, Analytical and Quality Plan (SAQP)

A SAQP has been developed to ensure that data collected for the soil sampling regime is representative and provides a robust basis for site assessment decisions. Preparation of the SAQP has been completed in general accordance with ASC NEPM (1999, amended 2013) methodology and includes:

- o Data quality objectives.
- o Sampling methodologies and procedures.
- o Field screening methods.
- o Sample handling, preservation and storage procedures.
- o Analytical QA/QC.

6.1 Data Quality Objectives (DQO)

Data quality objectives (DQO) have been prepared as statements specifying qualitative and quantitative data required to support project decisions. DQO have been prepared in general accordance with NSW EPA (2017) and US EPA (2006) guidelines and are presented in Table 8.

Table 8: Data quality objectives for the assessment of soil investigations.

Step 1 Stating the Problem	The proposed development will include residential land use with access to soil. Therefore the site must be deemed suitable to accommodate the proposed land use. This assessment is required to assess risk posed by AECs and COPC to onsite and offsite sensitive receptors.		
Step 2 Identifying the Decision(s)	Historical investigations have identified AECs which may be the source of contamination including buildings, bowling greens and fill present at the site. To assess the suitability of the site for future residential use, decisions are to be made based on the following questions: o Is site soil quality suitable for the intended land use? o Has previous or current site use impacted the quality of site soils posing a human health risk during intended future land use including construction phase? o Do site soils require remediation or management to prior to onsite residential land use?		
Step 3 Identification of Inputs to the Decision	The inputs to the assessment of site soil quality will include: o Soil sampling at nominated locations (where access is available) across the site. o Laboratory analytical results for relevant COPC. o Assessment of analytical results against site suitable human health and ecological risk criteria.		

	Study boundaries are as follows:		
Step 4	 Lateral – Lateral boundary of the assessment is defined by the site boundary as indicated in Attachment A. 		
Study Boundary Definitions	 Vertical – Vertical boundary will be governed by the maximum depth reached during subsurface investigations. 		
Deminions	 Temporal – At this stage of investigation, only one round of sampling has been undertaken. 		
Ston 5	The decision rule for this investigation are as follows:		
Step 5 Development of Decision Rules	If the concentration of contaminants in the soil data exceeds the adopted assessment criteria; an assessment of the need to further investigate, remediate and / or manage the onsite impacts in relation to the proposed development will be undertaken.		
Step 6 Specification of Limits on Decision Errors	Guidance found in ASC NEPM (1999 amended 2013) Schedule B2 regarding 95% upper confidence limit (UCL) states that the 95% UCL of the arithmetic mean provides a 95% confidence level that the true population mean will be less than or equal to this value. Therefore a decision can be made based on a probability that 95% of the data collected will satisfy the site acceptance criteria. A limit on decision error will be 5% that a conclusive statement may be incorrect.		
Step 7 Optimisation of Sampling Design	Proposed sampling locations shall provide even coverage across identified AECs on the site. Sampling shall attempt to ensure that critical locations are assessed, sampled, and analysed for appropriate contaminants of concern. Soil sampling locations were set using a combined judgemental and grid pattern across the site.		

6.2 Data Quality Indicators (DQI)

In accordance with NSW DEC (2006), the investigation data set has been compared with Data Quality Indicators (DQI) outlined in Table 9 to ensure that collected data meets the project needs and that DQOs have been meet.

Table 9: Data Quality Indicators.

Assessment Measure (DQI)	Comment	
Precision – A measure of the variability (or reproducibility) of data.	Precision is assessed by reviewing blind field duplicated sample set through the calculation of relative percent difference (RPD). Data precision is deemed acceptable where results are 10 x the EQL, and where RPDs are less than 50% (10-30 x EQL) or 30% (>30 x EQL). Exceedance of this range is still considered acceptable where heterogeneous materials are sampled.	
Accuracy – A measure of the closeness of reported data to the "true value".	Data accuracy is assessed by: o Method blanks. o Field spikes and blanks. o Laboratory control samples. o Matrix spikes.	

Assessment Measure (DQI)	Comment	
Representativeness – The confidence that data are	To ensure data representativeness the following field and laboratory procedures are followed:	
representative of each media present on the site.	 Ensure that the design and implementation of the sampling program has been completed in accordance with MA standard operating procedures (SOP). 	
	 Blank samples shall be used during field sampling to ensure no cross contamination or laboratory artefacts. 	
	 Ensure that all laboratory hold times are meet and that sample handling and transport is completed in accordance with MA SOP. 	
Completeness - A measure of	To ensure data set completeness, the following is required:	
the amount of usable data from a data collection	 Confirmation that all sampling methodology was completed in general accordance with MA SOP. 	
activity.	o COC and receipt forms.	
	 Results from all Laboratory QA/QC samples (Lab blanks, matrix spikes, lab duplicates). 	
	 NATA accreditation stamp on all laboratory reports. 	
Comparability - The	Data comparability is maintained by ensuring that:	
confidence that data may be considered to be equivalent for each sampling and analytical event.	 All site sampling events are undertaken following methodologies outlined in MA SOP and published guidelines. 	
ana analylical event.	 NATA accredited laboratory methodologies shall be followed on all laboratory testing. 	

6.3 Investigation and Sampling Methodology and Quality Assurance / Quality Control

Site investigation and soil sampling methodology (Table 10) was completed to meet the project DQOs.

Table 10: Investigation and sampling methodology.

Activity	Detail / Comments	
Fieldworks	Contamination investigations were completed on 14 February 2018, and involved:	
	 Excavation of 10 boreholes using a 4WD ute-mounted hydraulic rig (in carpark and driveway) and hand-operated push tube (bowling greens and grassed area). 	
	 Collection of soil samples from the auger or push tube for laboratory testing and future reference. 	
	 Collection of surface soil samples by hand for laboratory testing and future reference. 	
	Testing and sample locations are provided in Attachment D.	
Soil and sediment sampling	Soil sampling was completed by the supervising MA environment engineer using a new nitrile glove covered hand. All equipment decontaminated between sampling locations where required.	
	Each sample was placed into a laboratory-supplied, acid-rinsed 250mL glass jar, labelled with a unique identification number and no headspace	

Activity	Detail / Comments
	to limit volatile loss. A clean pair of gloves was used for each sample.
QA / QC sampling	Duplicate samples were collected for intra-laboratory analysis at a rate of approximately 1 per 10 primary samples. 2 soil duplicate samples were collected during investigations. A trip blank and trip spike sample was used during sampling.
Sample handling and transportation	Sample collection, storage and transport were conducted according to MA SOP. Collected samples were placed immediately into an ice chilled coolerbox. Samples were dispatched to NATA-accredited laboratories under chain of custody documentation within holding times.

A review of QA/QC procedure has been completed and is presented in the data validation report (Attachment F). The report concludes that data is suitable for the purposes of the assessment.

6.4 Laboratory Analytical Suite

Laboratory analysis was carried out by Envirolab Pty Ltd a NATA accredited laboratory. Laboratory analytical documentation is presented in Attachment G.

Site AEC areas were tested for the COPC in Table 11.

Table 11: Summary of primary soil laboratory analyses.

COPC	Number of Primary Samples Analysed
BTEXN	11
TRH	11
РАН	11
Heavy metals ¹	11
OCP/OPP	11
pH ²	3
CEC ²	3

Notes

Heavy metals – arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc.

² pH and CEC are not COPCs but were assessed to allow for calculation of site specific ElLs.

7 Site Assessment Criteria

7.1 Overview

The site assessment criteria (SAC) adopted for this assessment have been derived from the following source:

o ASC NEPM (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM).

Guideline values for individual contaminants analysed for this assessment are presented in laboratory tables in Attachment H.

Table 12 summarises the applicability of the SAC adopted for this investigation.

Table 12: Summary of SAC

Media	Adopted Guidelines	Applicability
Soil	ASC NEPM (1999,	Health Investigation Levels (HILs)
	amended 2013)	HIL A – residential land use with access to soil.
		Ecological Investigation Levels (EIL) ¹
		Site Ells have been calculated using methodology outlined in ASC NEPM (1999, amended 2013). Conservative values for soil physiochemical properties (pH and CEC) have been used in ElL calculations. Ambient background concentrations (ABC) have been taken from Olszowy et al. (1995) for aged contamination in low traffic areas in NSW.
		Environmental Screening Levels (ESLs)
		Urban residential and public open spaces.
		Health Screening Levels (HSLs)
		HSL A – Low density residential land use for sand (ASC NEPM 1999, amended 2013) have been adopted as a conservative measure.
		Management Limits
		TRH management levels have been adopted based on the proposed future land use.

Notes:

¹ See Section 7.2 for discussion on adopted ElLs.

7.2 Adopted EILs

3 soil samples were analysed for physiochemical properties (pH and CEC) as part of the laboratory analytical suite. Site specific ElLs for heavy metals calculated for the site were found to be above the ambient background concentrations observed within natural soil samples sent for laboratory analysis. As a majority of the site was observed to contain fill material between depths of 0.3 – 1.9 mBGL and no natural topsoil was observed onsite, calculated site specific ElLs for subsoil are considered overly conservative as SAC.

Adopted EILs for the site are calculated based on conservative physiochemical properties (pH of 4.0 and CEC of 5 cmol_c/kg) adopted from NEPM (1999, amended 2013) Table 1B(1).

8 Laboratory Analytical Results

Table 13 summarises the results of soil laboratory analysis. Detailed tabulated results showing individual sample concentrations compared to adopted SACs are shown in Attachment H. Laboratory analytical documentation is available in Attachment G.

 Table 13: Summary of soil laboratory results.

<u>HILs</u>
Lead exceeded the adopted HIL (300 mg/kg) at 6332/BH101/1.5 (1,700 mg/kg).
<u>EIL</u>
Lead exceeded the adopted EIL (1,100 mg/kg) at 6332/BH101/1.5 (1,700 mg/kg).
Copper exceeded the adopted EIL (55 mg/kg) at 6332/BH101/1.5 (860 mg/kg) and 6332/BH103/0.2 (57 mg/kg).
Nickel exceeded the adopted EIL (35 mg/kg) at 6332/BH106/0.4 (46 mg/kg).
Zinc exceeded adopted EIL (350 mg/kg) at 6332/BH101/1.5 (1, 200 mg/kg) .
HILS
All results below SAC.
<u>EIL</u>
All results below SAC.
<u>ESL</u>
All results below SAC.
<u>HSL</u>
All results below SAC.
Management Limits
All results below SAC.
HILS
All results below SAC.
<u>EIL</u>
All results below SAC.

Analyte	Results Compared to SAC
TRH	All results below SAC. EIL All results below SAC. ESL All results below SAC. HSL All results below SAC. Management Limits
PAH	All results below SAC. HILS Carcinogenic PAHs exceeded the adopted HIL (3 mg/kg) at 6332/BH101/1.5 (4.05 mg/kg). EIL All results below SAC. ESL Benzo(a)pyrene exceeded the adopted ESL (0.7 mg/kg) at 6332/BH101/1.5 (3.1 mg/kg). HSL All results below SAC.

9 Discussions

9.1 Samples Exceeding SAC

Soil sample 6332/BH101/1.5 (with SAC exceedances for heavy metals and PAH) was located within fill material underlying the existing carpark. Elevated contaminant concentrations are likely a result of anthropogenic material within the uncontrolled fill. Based on site testing, contamination was observed to be limited to this fill layer underlying the carpark. Soil sample 6332/BH101/2.0, located within natural soils beneath the contaminated layer was found to be below all adopted SAC.

Minor ElL exceedances at 6332/BH103/0.2 and 6332/BH106/0.4 are likely a result of anthropogenic material within fill. These SAC exceedances are addressed via a 95% upper confidence limit (UCL) analysis (Section 9.2).

No other exceedances of SAC were observed within fill material underlying the existing bowling greens or grassed area to the west of the bowling club.

9.2 95% UCL Analysis

To assess minor EIL exceedances of nickel and copper within fill material at the site, a 95% UCL analysis has been undertaken for samples taken from the site. Sample 6332/BH101/1.5 has not been included in UCL calculations as contaminant concentrations exceed 250% of the adopted EIL for nickel. UCL calculations are provided in Attachment I and are summarised below.

Table 14: Summary of UCL analysis.

COPC	Maximum Value (mg/kg)	EIL (mg/kg)	95% UCL (mg/kg)
Nickel	46	35	27.4
Copper	57	55	37.6

95% UCL for nickel and copper provide concentrations below the adopted EIL for the site. As a result, these exceedances are not considered a significant risk and do not require further remediation or management.

9.3 Data Gaps

It is noted that, due to access restrictions, soils underlying the existing bowling club at the site (AEC A) have not been tested. It is recommended that additional assessment and sampling of this AEC is undertaken following demolition of the existing structures. This can be completed during the remediation stage.

9.4 Acid Sulphate Soils (ASS)

The NSW Environment and Heritage eSPADE website identifies the site as Class 4 acid sulphate soil (ASS) risk. Boreholes undertaken as part of a geotechnical investigations (Douglas Partners, 2016) observed fill to a maximum depth of 1.2 mBGL and groundwater entering between 2.5 and 3.0 mBGL.

If the proposed development is to be constructed on-grade, it is unlikely that ASS soils are to be encountered during construction or excavation of fill material (if required). However, if any excavation beyond 2.0 mBGL (i.e. for a basement) or lowering of the water table is proposed as part of the development, ASS soils may pose a potential risk and are to be considered.

10 Conclusion and Discussions

SAC exceedances for heavy metals (lead, copper and zinc) and PAHs (benzo(a)pyrene and carcinogenic PAHs) were observed within fill material at one sampling location (6332/BH101/1.5), which may pose a potential risk to future human and environmental receptors at the site. It is recommended that a remedial action plan (RAP) be prepared for the site to address SAC exceedances within fill underlying the existing carpark at the site.

It is recommended that, following demolition of existing site structures, additional soil testing be conducted to address identified investigation constraints (Section 9.3) and data gaps within the CSM. Furthermore, analysis of all data (including new data from dwelling footprint) is to be undertaken using 95 % UCL confirmation limit to assess significance of ESL and EIL exceedances.

We consider that the site can be made suitable for proposed residential development provided that a RAP is developed and implemented accordingly. A likely remediation strategy may involve the removal and offsite disposal of identified contaminated soil considered to pose an unacceptable site risk. The RAP is to outline waste management requirements in light of any additional investigations or unexpected finds.

Following remediation works, a validation report is required to be prepared to confirm site suitability for the proposed development.

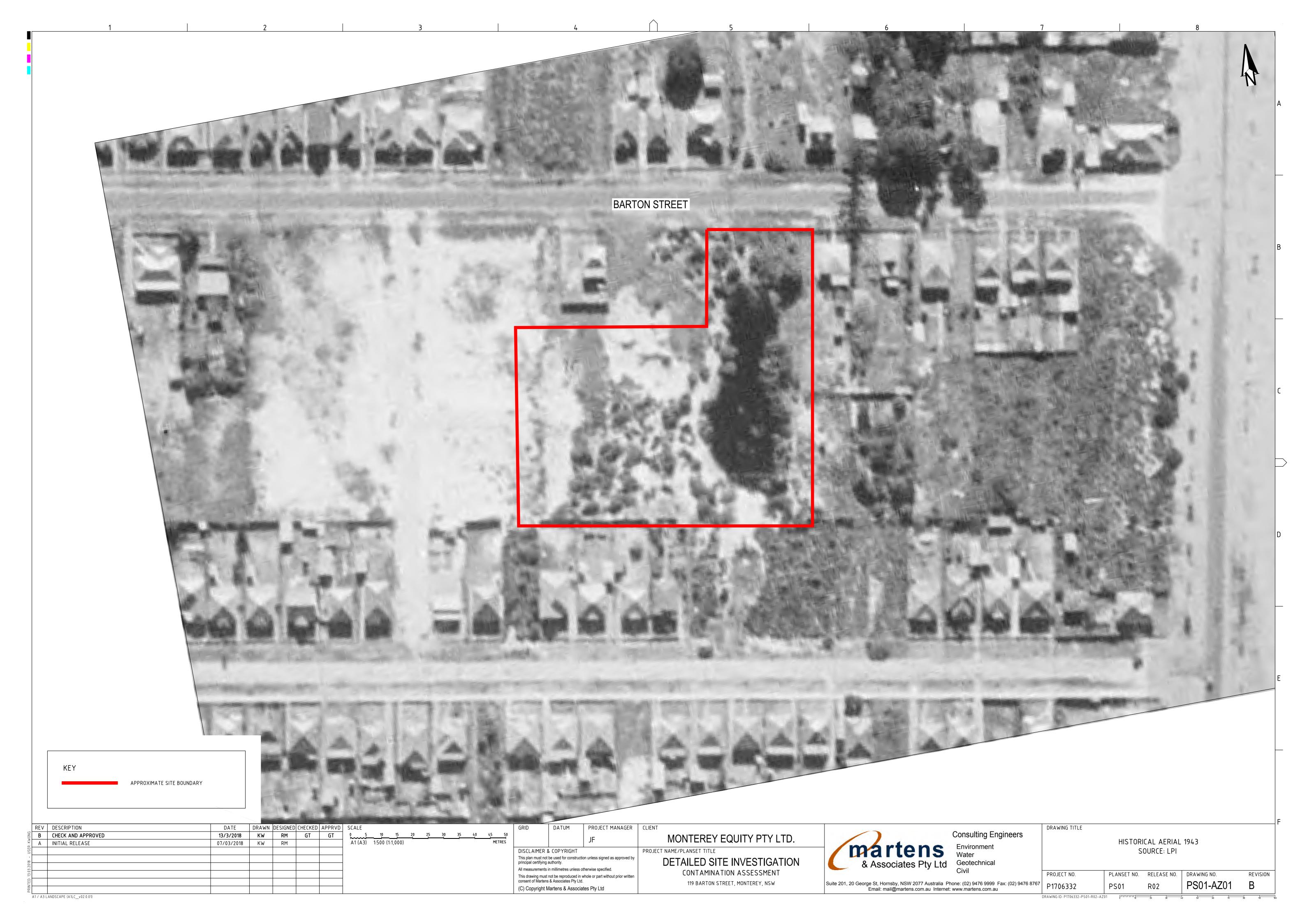
Prior to any soil being removed from site, a formal waste classification assessment in accordance with NSW EPA Waste Classification Guidelines (2014) is required.

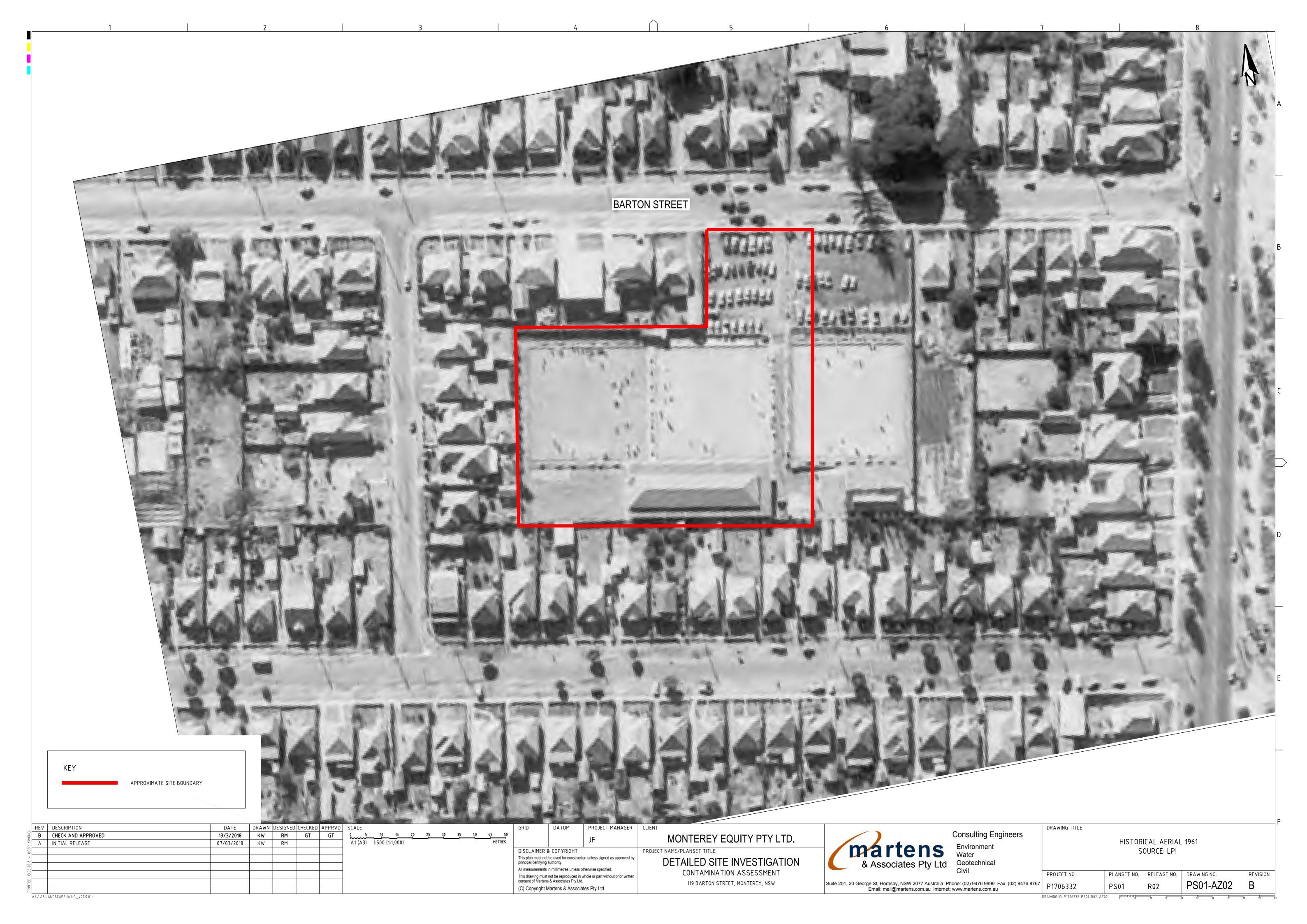
11 Limitations Statement

This contamination assessment was undertaken in line with current industry standards.

It is important, however, to note that no land contamination study can be considered to be a complete and exhaustive characterisation of a site nor can it be guaranteed that any assessment shall identify and characterise all areas of potential contamination or all past potentially contaminating land-uses. This is particularly the case on sites where additional assessment work and remediation is identified as being required. Therefore, this report should not be read as a guarantee that no further contamination shall be found on the site. Should material be exposed in future which appears to be contaminated or inconsistent with natural site soils, additional testing may be required to determine the implications for the site.

Martens & Associates Pty Ltd has undertaken this assessment for the purposes of the current development proposal. No reliance on this report should be made for any other investigation or proposal. Martens & Associates accepts no responsibility, and provides no guarantee regarding the characteristics of areas of the site not specifically studied in this investigation.


References


- Bayside Council DA/BA/CC records (2018).
- Herbert C. (1983) Sydney 1:100,000 Geological Sheet 9130, 1st edition, Geological Survey of New South Wales, Sydney.
- Nearmap Aerial photographs (2009, 2018).
- NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure Referred to as ASC NEPM (1999, amended 2013).
- NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW Department of Environment & Heritage (eSPADE, NSW soil and land information). http://www.environment.nsw.gov.au
- NSW DPI Water, groundwater database, accessed February 9, 2018. http://allwaterdata.water.nsw.gov.au/water.stm
- NSW EPA (1995) Sampling Design Guidelines.
- NSW Land and Property Information (LPI) Aerial photographs (1961, 1975, 1991).
- NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, 2nd Edition.
- NSW SIX Spatial Information Exchange Land & Property Information Aerial photograph (2017). https://six.nsw.gov.au/wps/portal/
- SEPP 55 Remediation of Land.

12 Attachment A – Historic Aerial Photographs and Site Location

13	Attachment B – Bayside Council Correspondence

Robert Mehaffey

From: Andrew Mesthos

Sent: Wednesday, 7 February 2018 4:05 PM

To: Robert Mehaffey

Subject: FW: 119 Barton Street Monterey

From: Leanne McKinnon [mailto:Leanne.McKinnon@bayside.nsw.gov.au]

Sent: Wednesday, 7 February 2018 3:41 PM

To: Andrew Mesthos au>

Subject: 119 Barton Street Monterey

Dear Andrew

In response to your recent request regarding 119 Barton Street Monterey. I advise these are the relevant files:

DA-2008/195 Carry out minor alterations and additions to change room, handicap entry ramp and upgrade

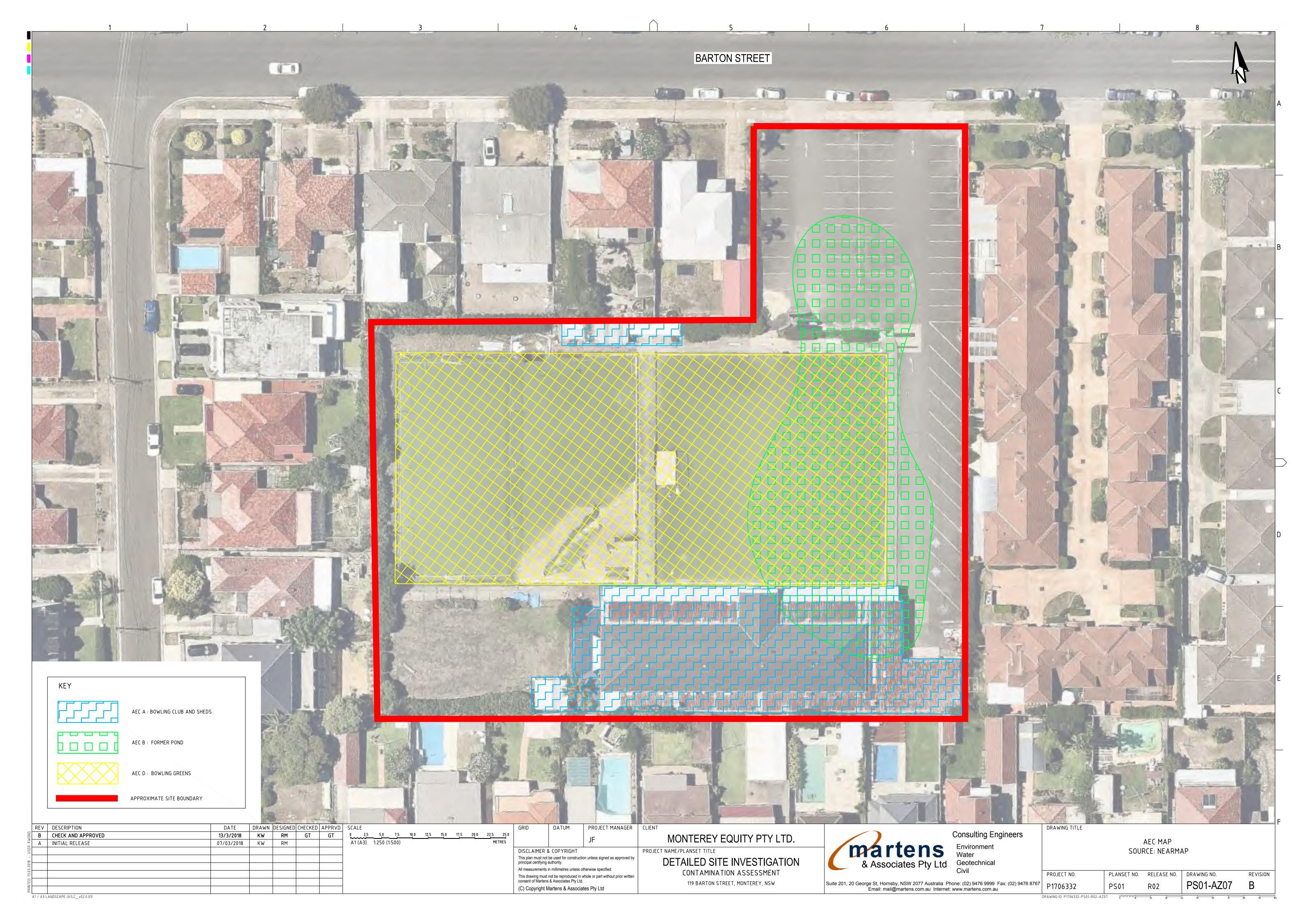
kitchen and bar.

BA-1995/696 Outbuilding shed Class 10

BA-1996/134 Club additions to club Class 6

BA-1995/736 Building Application villas & townhouses 13 units class 2

Regards


Leanne McKinnon Information Officer 444-446 Princes Highway, Rockdale NSW 2216 **T** 02 9562 1682

E <u>leanne.mckinnon@bayside.nsw.gov.au</u> **W** <u>www.bayside.nsw.gov.au</u>

This email is intended solely for the addressee and may contain confidential information. Any disclosure, copying or distribution to others is not permitted without agreement of the sender. Council does not represent, warrant or guarantee this email is free of errors, virus or interference. Any views expressed or commitments made in this email are those of the individual sender, and may not necessarily be those of Council. With regard to any personal information that may be included in this email, Council complies with the Privacy and Personal Information Protection Act, and expects the recipient to do likewise. This email may be made available to the public under various legislation.


14 Attachment C – AEC Map

15 Attachment D – Sampling Plan

16 Attachment E – Borehole Logs

CL	IENT Monterey Equity Pty Ltd OJECT Contamination Assessment								COMMENCED	14/02/2018	COMPLETED	14/0	02/20	18		REF	BH101
PR	OJEC	тС	Contami	nation A	Assessment				LOGGED	RM	CHECKED						
SIT	Έ	1	19 Bart	on St, N	Nonterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A				Sheet PROJECT	1 OF 1 NO. P1706332
EQ	UIPME	NT			4WD ute-mounted hydrau	lic d	ril rig		EASTING		RL SURFACE	4.1	m			DATUM	AHD
EXC	CAVAT	ION [DIMENSI	ONS	Ø100 mm x 2.50 m depth				NORTHING		ASPECT	-				SLOPE	<2%
		Dril	lling		Sampling				<u>'</u>	Fi	eld Material D	escr	iptio	n		'	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		ADI OBSE	CTURE AND DITIONAL RVATIONS
			-	0.10 4.00	6332/BH101/0.15/DUP/ D 0.15 m 6332/BH101/0.15/S/1 D 0.15 m			SP	ASPHALT FILL: Gravelly SANI concrete.	D, dark brown, medium gr	rained, with trace				PAVEME FILL	NT — — — -	
	М	Not Encountered	1—	0.50 3.60	6332/BH101/0.7/S/1 D 0.70 m				Trace slag.					L			-
AD/T	L	Enc	-	2.95 1.30	6332/BH101/1.2/S/1 D 1.20 m		XX	CI	FILL: CLAY, mediur	n plasticity, light brown.			М	s			=
1		Not	-	2.80 1.90	6332/BH101/1.5/S/1 D 1.50 m			SP	FILL: SAND, brown,	medium grained, with tra	ce brick.						-
	L		2	2.20	6332/BH101/2.0/S/1 D 2.00 m			SP	SAND, white, mediu	m grained.				MD	RESIDU	AL SOIL -	
				2.50					Hole Terminated at	2.50 m					2.50: Inv	estigation li	mited.
3																	- - - -
,			4														_
			_														-
			5														-
			-	1	EXCAVATION LOG TO) BF	E REA	D IN (CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES A	AND	ABBI	REVIATIO	ONS	-
	/)		<u> </u>				MARTENS &	ASSOCIATES PTY LTD St. Hornsby, NSW 2077	,						g Log -

martens
(C) Copyright Martens & Associates Pty. List.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	IENT	N	/lonterey	/ Equity	/ Pty Ltd				COMMENCED	14/02/2018	COMPLETED	14/0)2/20	18		REF	BH102
PR	OJEC	тС	Contami	nation /	Assessment				LOGGED	RM	CHECKED					0,	4.05.4
SIT	Έ	1	19 Bart	on St, I	Monterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A				Sheet PROJECT	1 OF 1 NO. P1706332
EQI	JIPME	NT			4WD ute-mounted hydra	ulic d	Iril rig		EASTING		RL SURFACE	3.7	m			DATUM	AHD
EXC	CAVAT		DIMENSI	ONS	Ø100 mm x 2.00 m depth	ı			NORTHING		ASPECT	-				SLOPE	<2%
		Dri	lling		Sampling			z		Fi	ield Material D		Ė		1		
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		CK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		AD OBSI	ICTURE AND DITIONAL ERVATIONS
	 M		=	0.10 3.60	6332/BH102/0.2/S/1 D 0.20 m			SP F	ASPHALT	D, dark brown, medium gr	rained, with trace				FILL	MENT - — — —	
		əred	-	0.40 3.30 0.80	6332/BH102/0.5/S/1 D 0.50 m			SP F	FILL: SAND, grey, fi	ne to medium grained.				L			-
AD/T	L	Not Encountered	1	2.90	6332/BH102/0.9/S/1 D 0.90 m		(X)	SP \$	SAND, yellow/white,	medium grained.			М		RESID	UAL SOIL	
			-											MD			-
			2—	2.00	6332/BH102/1.8/S/1 D 1.80 m										2.00: In	vectigation	- limited
		Hole Terminated at 2.00 m 2.00: Investigation limited.															
			-														-
			-														-
			-														-
			3—														-
			=														-
-			-														-
			=														-
			-														-
			4 —														
																	-
,			-														-
			-														-
			5—														-
			-														-
			-														-
			=														-
			-														_
<u>'</u>					EXCAVATION LOG TO) BI	E REA	D IN C				ES A	AND	ABB	REVIA1	TIONS	
1	1)					0 "	MARTENS &	ASSOCIATES PTY LTD)			Fn	ain	ممrin	a Loa -

martens
(C) Copyright Marlens & Associates Pty. Ltd.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	IENT Monterey Equity Pty Ltd								COMMENCED	14/02/2018	COMPLETED	14/02/20	18		KEF	BH103	
PR	OJEC	т	Contami	nation A	Assessment				LOGGED	RM	CHECKED				Chast	1 OF 1	
SIT	E	1	19 Bart	on St, N	Monterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A			Sheet PROJECT	1 OF 1 NO. P1706332	
EQL	JIPME	NT			4WD ute-mounted hydrau	ılic	dril rig		EASTING		RL SURFACE	3.7 m			DATUM	AHD	
EXC	AVAT	ION I	DIMENSI	ONS	Ø100 mm x 2.50 m depth				NORTHING		ASPECT	-			SLOPE	<2%	
		Dri	lling		Sampling				•	Fi	ield Material D	escriptio	on				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS	
	М		-	0.10 3.60 0.40	6332/BH103/0.2/S/1 D 0.20 m			SP	concrete.	D, dark brown, medium gr	rained, with trace		L	FILL	. — — -		_
			-	3.30	6332/BH103/0.5/S/1 D 0.50 m			SP	SAND, grey, fine to	medium grained.				RESIDU	JAL SOIL		
AD/T	L	Not Encountered	1	1.00 2.70	6332/BH103/1.1/S/1 D 1.10 m		SP SAND, grey/white, medium grained.										
			2 — -	2.50													
			_	2.50					Hole Terminated at	2.50 m				2.50: Inv	vestigation I	imited.	
			-														٠
			3														-
			_														
			-														
			-														
			-														
			4														
			, í														
			-														-
			-														
			-														
																	•
			5—														-
			-														
			_														
			-														
			-														
				<u> </u>	EVCAVATION LOC TO) L	E DEA	D IN C	ON II ICTION W		DEDORT NOT	LEG VVID	APP	DE\//^*	IONE		_
	EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS MARTENS & ASSOCIATES PTY LTD Engine or vine Log																

martens

Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	ľ	Montere	y Equity	Pty Ltd				COMMENCED	14/02/2018	COMPLETED	14/0	2/20°	18		REF	BH104	
PR	OJEC	т	Contam	ination A	Assessment				LOGGED	RM	CHECKED					Observa	4.05.4	
SIT	Ε		119 Bar	ton St, M	Monterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A				Sheet PROJECT	1 OF 1 NO. P1706332	
EQI	JIPME	NT			4WD ute-mounted hydrau	ılic c	Iril rig		EASTING		RL SURFACE	3.8 r	n			DATUM	AHD	
EXC	CAVAT	ION	DIMENS	IONS	Ø100 mm x 5.50 m depth				NORTHING		ASPECT	-				SLOPE	<2%	
			lling		Sampling					Fi	ield Material D	-	_					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY		ADI OBSE	CTURE AND DITIONAL ERVATIONS	
	М		-	3.75	6332/BH104/0.2/S/1 D 0.20 m				SPHALT LL: SAND, grey, v	vith trace gravels.		_ >		L	PAVEME FILL	<u>ENT</u>		- -
	L		1—	0.50	6332/BH104/0.7/S/1 D 0.70 m			SP S.	AND, grey, fine to	medium grained.			М		RESIDU	AL SOIL		
AD/T		13/02/18	3											· MD				
	М		5—	5.50				Н	ole Terminated at	5.50 m			w		5.50: Inv	restigation I	imited.	
			-	-					olo Tominialeu al	5.50 III						3.3011		
(r	na	art	N.	EXCAVATION LOG TO) BI	E REA	Suite	MARTENS & 201, 20 George S Phone: (02) 9476	TH ACCOMPANYING ASSOCIATES PTY LTD st. Hornsby, NSW 2077 9999 Fax: (02) 9476 8' WEB: http://www.marter) Australia 767	ES A		Εn	gine		g Log - OLE	_

(C) Copyright Martens & Associates Pty. Ltd.

CLIENT Monterey Equity Pty Ltd									COMMENCED	14/02/2018	COMPLETED	14/02/2	018		KEF	BH105	
PRO	DJEC	т	Contami	nation A	Assessment				LOGGED	RM	CHECKED						
SIT	E	1	119 Bart	on St, N	Nonterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A			Sheet	1 OF 1 NO. P1706332	
EQL	JIPME	NT			4WD ute-mounted hydrau	ılic d	dril rig		EASTING		RL SURFACE	4.3 m			DATUM	AHD	
EXC	AVAT	ION	DIMENSI	ONS	Ø100 mm x 2.50 m depth				NORTHING		ASPECT	-			SLOPE	<2%	
		Dri	lling		Sampling					Fi	ield Material D	escript	ion				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONDITION CONSISTENCY DENSITY		AD OBSI	CTURE AND DITIONAL ERVATIONS	
			_	4.25 0.30	6332/BH105/0.15/S/1 D 0.15 m		\bigotimes		ASPHALTFILL: Gravelly SANI	D, brown/grey, fine graine	d.	_		FILL			ر
			-	4.00	6332/BH105/0.4/S/1 D 0.40 m			SP	SAND, grey, fine gra	ained.				RESIDU	JĀL ŠOIL		
AD/T	1.50 2.80								Grading to yellow.			M	L				-
	2— Buzons:																-
			_	2.50					Hole Terminated at						vestigation l		
			3														- -
			4														- -
	5																-
			-														- - -
			-														
					EXCAVATION LOG TO		E DE^	D IN C			REDUBT NOT	TES ANI) APP	RE\//\T	IONS		
	7.	EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS MARTENIS & ASSOCIATES BTV LTD.															

martens
(C) Copyright Martens & Associates Phy. List.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	N	/lontere	y Equity	Pty Ltd				COMMENCED	14/02/2018	COMPLETED	14/02/	201	18		REF	BH106	
PR	OJEC	т	Contami	ination A	ssessment				LOGGED	RM	CHECKED					Sheet	1 OF 1	
SIT	E	1	19 Bart	ton St, M	Ionterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A					NO. P1706332	
EQI	JIPME	NT		1	Push Tube				EASTING		RL SURFACE	3.7 m				DATUM	AHD	
EXC	AVAT	ION [DIMENSI	IONS -	1.50 m depth				NORTHING		ASPECT	-				SLOPE	<2%	
		Dri	lling		Sampling				•	Fi	ield Material D	escrip	tio	n				
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONDITION	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS	
				0.15	6332/BH106/0.1/S/1 D		\bowtie	SC SP	FILL: Clayey SAND				D	MD	FILL			
			-	3.55	0.10 m 6332/BH106/0.25/S/1			SP	FILL: SAND, white, FILL: Gravelly SANI			-1						
			_	0.35 3.35	D 0.25 m 6332/BH106/0.4/S/1 D			SP			 m grained.			L				
				0.55	0.40 m		\boxtimes					_						
			-	3.15	6332/BH106/0.65/S/1			SP	SAND, white/yellow	fine to medium grained.					RESIDU	JAL SOIL		
Ы	L		-	1	D 0.65 m								и					
			1															
			'											MD				
			-	1														-
		$\overline{\underline{\vee}}$	-															
		13/02/18		1.50					Hole Terminated at	1.50 m					1.50: Inv	vestigation I	imited.	
		5	-	1														
			-	1														-
			2-	-														_
			-															•
			-	1														
			-															
			-															
			3 —	1														-
			-	-														
			-	1														
			-	-														
			4															
			-															
			-	†														
			-	-														
			-	1														
			5	-														_
			-	1														
			-	-														
			_															
			<u> </u>	E	I EXCAVATION LOG TO	B	E REA	D IN	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES AN	ID.	ABBI	LEVIAT	IONS		

martens
(C) Copyright Martens & Associates Pty. List.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

PROJECT Contamination Assessment GORGET MA	CLI	ENT	Monterey Equity Pty Ltd							COMMENCED	14/02/2018	COMPLETED	14/0	2/20	18		REF	BH107
198	PR	DJEC	тс	Contami	nation A	ssessment				LOGGED	RM	CHECKED					Sheet	1 OF 1
Dollar	SIT	E	1	19 Bart	on St, M	Ionterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A					
Description Sampling Sampli	EQL	JIPME	NT		F	Push Tube				EASTING		RL SURFACE	3.7 ı	n			DATUM	AHD
SAMPLE OR PRIZE OR	EXC	AVAT	ION E	DIMENSI	ONS	1.50 m depth				NORTHING		ASPECT	-				SLOPE	<2%
Section 1			Dril	lling		Sampling					Fi	ield Material D	-	_				
Section 1	МЕТНОD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY		ADI	DITIONAL
1					3.65	6332/BH107/0.1/S/1 D		X	√sc √							FILL		
December December				-		0.10 m		\bowtie	\perp \perp				-+					
E			ъ	-		6332/BH107/0.3-0.4/S/1 D 0.30 m			-			 m grained.			L			
1— 1.60 Hole Terminated at 1.50 m 1.50 Investigation limited.			ntere		3.25				SP							RESIDU	IAL SOIL	
1— 1.60 Hole Terminated at 1.50 m 1.50 Investigation limited.			con	-	•	6332/BH107/0.6/S/1 D 0.60 m												
2— 3— 4— 5— -	I.A.	L	Not En	1 										M	MD			
2— 3— 4— 5— -				-														
3—					1.50					Hole Terminated at	1.50 m					1.50: ln\	estigation li	imited.
3—				-														
				2-														-
				_														
				-														
				-														
				_														
5—				3-														-
5—				-														
5—				_														
5—																		
5—				-														
5—				-														
				4 —														-
				-														
				-														
				-														
				_														
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				5—														-
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-														
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				_														
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																		
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-														
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-														
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																		
					E	EXCAVATION LOG TO	BI	E REA	D IN (CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES A	AND	ABBI	REVIATI	IONS	

martens
(C) Copyright Markens & Associates Pty. Ltd.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	T Monterey Equity Pty Ltd							COMMENCED	14/02/2018	COMPLETED	14/02	2/201	18		REF	BH108
PR	OJEC	тс	Contami	nation A	ssessment				LOGGED	RM	CHECKED					Sheet	1 OF 1
SIT	E	1	19 Bart	on St, M	Ionterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A					NO. P1706332
EQI	JIPME	NT		F	Push Tube				EASTING		RL SURFACE	3.7 n	ı			DATUM	AHD
EXC	AVAT	ION E	DIMENSI	ONS	1.50 m depth				NORTHING		ASPECT	-				SLOPE	<2%
		Dril	ling		Sampling					F	ield Material D		_	_			
МЕТНОD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	L COOR	CONDITION	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS
				3.60	6332/BH108/0.05/S/1 D 0.05 m		X	SC SP		, grey/brown, coarse.		_ /	D	MD.	FILL		
			-	0.00				SP	FILL: SAND, white, FILL: Gravelly SAN			- –′		L			
		-	_	0.40	6332/BH108/0.3/S/1 D 0.30 m		\bowtie										
		Not Encountered		3.25			· · · · ·	\S <u>P</u> SP		D, dark grey/black, mediu, fine to medium grained.	m grained.	-1			RESIDU	AL SOIL	
		noon	-		6332/BH108/0.6/S/1 D 0.60 m			.		•							
Б	L	声	-										М				
		ž	1 —					.						MD			_
			•														
			-					.									
			-														
				1.50					Hole Terminated at	1.50 m					1.50: ln\	restigation I	imited.
			=														
			2 —														-
			-														
			-														
			3 —														-
			-														
			_														
			-														
			-														
			4 —														-
			_														
			-														
			_														
			_														
			5 —														-
			-														
			_														
			-														
			-														
				E	EXCAVATION LOG TO	BI	E REA	D IN	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES A	ND	ABB	REVIAT	ONS	

martens
(C) Copyright Martens & Associates Pty. List.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	N	Montere:	y Equity	Pty Ltd				COMMENCED	14/02/2018	COMPLETED	14/02/2	018		REF	BH109	
PR	OJEC	тс	Contami	nation A	ssessment				LOGGED	RM	CHECKED				Sheet	1 OF 1	
SIT	E	1	19 Bart	ton St, M	Nonterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A				NO. P1706332	
EQI	JIPME	NT		1	Push Tube				EASTING		RL SURFACE	3.7 m			DATUM	AHD	
EXC	AVAT	ION [DIMENSI	ONS -	1.50 m depth				NORTHING		ASPECT	-			SLOPE	<2%	
		Dril	lling		Sampling				•	Fi	eld Material D	escript	ion		•		
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY	DENSILT	AD	CTURE AND DITIONAL ERVATIONS	
				0.15	6332/BH109/0.1/S/1 D		\bowtie	SC A	FILL: Clayey SAND, FILL: SAND, white,			/ □					
			-	3.55 0.30	0.10 m 6332/BH109/0.25/S/1			SP	FILL: SAND, WIILE, OF			-1	T				-
		р	_	3.35	D 0.25 m		Ž.	SP	FILL: Gravelly SAND), dark grey/black, mediu	m grained.	_7	-	RESID	UAL SOIL		
		Not Encountered			6332/BH109/0.5/S/1 D			SP	SAND, white/yellow,	fine to medium grained.							
		cour	-		0.50 m												-
Ы	L	t En	-	-								M					-
		ž											М				
			1														
			-	-													-
			_														
				1.50					Hole Terminated at	1.50 m			+	1.50: In	vestigation I	imited.	
			-														
			-														=
			2-														_
			-														
			-														
			_														
			-														
			3-														-
			-	-													
			_														
			-														•
			-	-													
			4														_
																	•
			-	1													
			-														
			_														
			_														
			5	1													-
			-	1													
			-	-													
																	•
			-	-													
					 EXCAVATION LOG TO	רם (E DE^	ואו ח			DEDORT NOT	TEC ANI	7 45	DDE\//A7	LIUNG		
					_AOAVATION LOG TO	ום כ	LICA	אוו ח (DOINGUO HOIN WI	ACCONTANTING	NLF OR I NO	LO ANI) AB	PLEVIA	IONO		

martens
(C) Copyright Martens & Associates Pty. List.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT								COMMENCED	14/02/2018	COMPLETED	14/02/20)18		REF	BH110	
PR	OJEC	т	Contami	nation A	ssessment				LOGGED	RM	CHECKED				Sheet	1 OF 1	
SIT	E	1	119 Bart	on St, M	lonterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A			l	NO. P1706332	
EQI	JIPME	NT		-	Push Tube				EASTING		RL SURFACE	4.3 m			DATUM	AHD	
EXC	AVAT		DIMENSI	ONS .	1.50 m depth				NORTHING		ASPECT	-			SLOPE	<2%	
		Dri	lling	1	Sampling					Fi	ield Material D		_	1			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		AD OBSI	CTURE AND DITIONAL ERVATIONS	
METHOI METHOI	PENETR RESISTA	Not Encountered WATER	1— 1— 3— 4— 4— 4— 4— 4— 4— 4— 4— 4— 4— 4— 4— 4—	0.50 3.80 0.75 3.55		RECOVE	GRAPHII	// NSCS/ N	FILL: SAND, brown	fine grained, with rootlets	s, gravels.		CONSTRUCTION OF THE DENSITY OF THE D	FILL /T	OBSI OPSOIL Vestigation	ERVATIONS	
			5— - -		EXCAVATION LOG TO					TILL ACCOMPANIANCE	DEPOSIT NOT	TEO AMICINE	ARR		COMO		-
					_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	اں ,	_ 1\L/\	יאוי כ	SCHOOL HOIN WI		TALL CITTINO	LO ANL	טטיי	· (10110		

martens
(C) Copyright Martens & Associates Phy. List.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

17 Attachment F – Data Validation Report

1.	Sample Handling

		Yes	No
			(Comments below)
a. Wei	re sample holding times met?	✓	
	re samples in proper custody between the field and ching the laboratory?	✓	
c. We	ere the samples properly and adequately preserved?	✓	
	re the samples received by the laboratory in good adition?	✓	
COMM	ENTS		
Sample	e handling is: ✓ Satisfactory		
	Partially		
	Satisfactory		
	Unsatisfactor	у	

2. Precision / Accuracy Statement

		(Comments below)
a. Was a NATA registered laboratory used?	✓	
b. Did the laboratory perform the requested tests?	✓	
c. Were laboratory methods adopted NATA endorsed?	✓	
d. Were appropriate test procedures followed?	✓	
e. Were reporting limits satisfactory?	✓	
f. Was the NATA Seal on the reports?	✓	
g. Were reports signed by an authorised person?	✓	
COMMENTS		
Precision / Accuracy of the Laboratory Report: Partially		
Satisfactory Unsatisfactory	,	

3. Field Quality Assurance / Quality Control (QA/QC)

	Media	Number
- November of Drive on Community and the state of	Soil:	14
a. Number of Primary Samples analysed (does not include duplicates)	Water:	-
(does not include dopileares)	Material	-
b. Number of days of sampling		1
c. Number and Type of QA/QC Samples analysed	Soil	Water
Intra-Laboratory Field Duplicates	2	
Inter-Laboratory Field triplicates	-	
Trip Blanks	1	
Field Rinsate	-	
Other (Field Blanks, Spikes, etc.)	1	
Comments	l	
Trip spike/blank used		

Field Duplicates

Adequate Numbers of intra-laboratory field duplicates analysed?

Adequate Numbers of inter-laboratory field duplicates analysed?

Were field duplicate RPDs within Control Limits?

- i. Organics
- ii. Metals / Inorganics
- iii. Nutrients

Yes	No (Comments below)
✓	
-	-
	N/A
	✓
	N/A

COMMENTS

RPDs were exceeded in duplicate samples 6332/DUP101 (copper) and 6332/DUP102 (lead, arsenic, mercury and zinc). This is likely attributed to heterogenous fill material being sampled. All RPD sample exceedances are below the adopted SAC with the exception of 6332/BH101 for copper. For copper that exceeds the EIL, the higher value (35 mg/kg) has been adopted for 95% UCL analysis to ensure data validation.

Summary of Quality Assurance / Quality Control (QA/QC)

QA/QC Type	Satisfactory	Partially Satisfactory	Unsatisfactory				
Sample handling	✓						
Precision / Accuracy of the Laboratory Report	✓						
Field QA / QC	✓						
Laboratory Internal QA / QC	✓						
Data Usability							
1. Data directly usable ✓							
2. Data usable with the (see comment below		ctions/modifications					
3. Data not usable.							
COMMENTS							

PSI Monterey Equity Pty Ltd

Filed Duplicates (SOIL) Filter: SDG in('ENVIR' Field ID Sampled Date/1			ENVIROLAB 2018-02-14T00:00:00 6332/BH101 13/02/2018	ENVIROLAB 2018-02-14T00:00:00 6332/DUP101 13/02/2018	RPD	ENVIROLAB 2018-02-14T00:00:00 6332/BH110 13/02/2018	ENVIROLAB 2018-02-14T00:00:00 6332/DUP102 13/02/2018	RPD	
Chem_Gre	ChemNam	Units	EQL	I					П
Inorganics	Moisture	%	0.1	11.0	9.7	13	2.3	2.6	12
Lead	Lead	mg/kg	1	28.0	26.0	7	32.0	13.0	84
Metals	Arsenic	mg/kg	4	<4.0	<4.0	0	<4.0	12.0	100
	Cadmium	mg/kg	0.4	<0.4	<0.4	0	<0.4	<0.4	0
	Chromium	mg/kg	1	8.0	9.0	12	9.0	8.0	12
	Copper	mg/kg	1	35.0	24.0	37	8.0	10.0	22
	Mercury	mg/kg	0.1	<0.1	<0.1	0	1.7	3.5	69
	Nickel	mg/kg	1	14.0	12.0	15	3.0	3.0	0
	Zinc	mg/kg	1	26.0	28.0	7	40.0	89.0	76

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 80 (1-10 x EQL); 50 (10-30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

18 Attachment G – Laboratory Analytical Documentation

Envirolab Services Pty Ltd ABN 37 112 535 645 shley St Chatswood NSW 2067

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 185170

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Robert Mehaffey, Gray Taylor
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1706332 - 119 Barton St Monterey DSI
Number of Samples	41 soil
Date samples received	14/02/2018
Date completed instructions received	14/02/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	21/02/2018	
Date of Issue	20/02/2018	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Dragana Tomas, Senior Chemist Jeremy Faircloth, Organics Supervisor Long Pham, Team Leader, Metals **Authorised By**

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil							
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18	
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106	
Depth		0.15	1.5	0.2	0.5	0.25	
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018	
Type of sample		soil	soil	soil	soil	soil	
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018	
Date analysed	-	19/02/2018	19/02/2018	19/02/2018	19/02/2018	19/02/2018	
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25	
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25	
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25	
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2	
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1	
m+p-xylene	mg/kg	<2	<2	<2	<2	<2	
o-Xylene	mg/kg	<1	<1	<1	<1	<1	
naphthalene	mg/kg	<1	<1	<1	<1	<1	
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1	
Surrogate aaa-Trifluorotoluene	%	99	100	99	107	104	

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
Your Reference	UNITS	6332/BH106	6332/BH107	6332/BH109	6332/BH110	6332/BH110
Depth		0.4	0.1	0.1	0.05	0.60.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	19/02/2018	19/02/2018	19/02/2018	19/02/2018	19/02/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	106	109	104	112	105

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		185170-39	185170-40
Your Reference	UNITS	Trip Blank	Trip Spike
Depth		-	-
Date Sampled		13/02/2018	13/02/2018
Type of sample		soil	soil
Date extracted	-	15/02/2018	15/02/2018
Date analysed	-	19/02/2018	19/02/2018
TRH C ₆ - C ₉	mg/kg	<25	[NA]
TRH C ₆ - C ₁₀	mg/kg	<25	[NA]
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	[NA]
Benzene	mg/kg	<0.2	95%
Toluene	mg/kg	<0.5	95%
Ethylbenzene	mg/kg	<1	98%
m+p-xylene	mg/kg	<2	96%
o-Xylene	mg/kg	<1	97%
naphthalene	mg/kg	<1	[NA]
Total +ve Xylenes	mg/kg	<1	[NA]
Surrogate aaa-Trifluorotoluene	%	102	102

svTRH (C10-C40) in Soil						
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106
Depth		0.15	1.5	0.2	0.5	0.25
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	18/02/2018	18/02/2018	18/02/2018	18/02/2018	18/02/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	140	170	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	120	140	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	240	260	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	240	260	<50	<50
Surrogate o-Terphenyl	%	79	82	85	79	79

svTRH (C10-C40) in Soil						
Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
Your Reference	UNITS	6332/BH106	6332/BH107	6332/BH109	6332/BH110	6332/BH110
Depth		0.4	0.1	0.1	0.05	0.60.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	18/02/2018	18/02/2018	18/02/2018	18/02/2018	18/02/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	80	80	78	82	83

PAHs in Soil						
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106
Depth		0.15	1.5	0.2	0.5	0.25
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	0.5	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.8	4.3	0.3	<0.1	<0.1
Anthracene	mg/kg	0.2	0.8	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	1.3	8.3	0.3	<0.1	<0.1
Pyrene	mg/kg	1.3	7.9	0.3	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.5	2.3	0.2	<0.1	<0.1
Chrysene	mg/kg	0.7	3.2	0.2	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.9	4.9	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.53	3.1	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	2.6	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.4	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	2.9	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	7.1	41	1.3	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.7	4.6	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.8	4.6	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.8	4.6	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	97	96	88	94	95

PAHs in Soil						
Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
Your Reference	UNITS	6332/BH106	6332/BH107	6332/BH109	6332/BH110	6332/BH110
Depth		0.4	0.1	0.1	0.05	0.60.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.6	<0.1	<0.1	<0.1	0.3
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.3	<0.1	<0.1	<0.1	0.1
Pyrene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	1.6	<0.05	<0.05	<0.05	0.4
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	91	93	94	95	85

Organochlorine Pesticides in soil						
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106
Depth		0.15	1.5	0.2	0.5	0.25
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	96	88	93	95

Organochlorine Pesticides in soil						
Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
Your Reference	UNITS	6332/BH106	6332/BH107	6332/BH109	6332/BH110	6332/BH110
Depth		0.4	0.1	0.1	0.05	0.60.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Surrogate TCMX	%	91	95	95	96	96

Organophosphorus Pesticides						
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106
Depth		0.15	1.5	0.2	0.5	0.25
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	96	88	93	95

Organophosphorus Pesticides						
Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
Your Reference	UNITS	6332/BH106	6332/BH107	6332/BH109	6332/BH110	6332/BH110
Depth		0.4	0.1	0.1	0.05	0.60.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	91	95	95	96	96

Acid Extractable metals in soil						
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106
Depth		0.15	1.5	0.2	0.5	0.25
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Arsenic	mg/kg	<4	13	<4	<4	<4
Cadmium	mg/kg	<0.4	3	<0.4	<0.4	<0.4
Chromium	mg/kg	8	29	6	<1	2
Copper	mg/kg	35	860	57	1	3
Lead	mg/kg	28	1,700	15	1	4
Mercury	mg/kg	<0.1	0.5	<0.1	<0.1	0.2
Nickel	mg/kg	14	25	21	<1	4
Zinc	mg/kg	26	1,200	12	<1	6

Acid Extractable metals in soil						
Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
Your Reference	UNITS	6332/BH106	6332/BH107	6332/BH109	6332/BH110	6332/BH110
Depth		0.4	0.1	0.1	0.05	0.60.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	6	7	5	9	4
Copper	mg/kg	15	<1	2	8	4
Lead	mg/kg	19	1	3	32	75
Mercury	mg/kg	<0.1	<0.1	<0.1	1.7	0.2
Nickel	mg/kg	46	1	2	3	5
Zinc	mg/kg	15	5	17	40	9

Acid Extractable metals in soil			
Our Reference		185170-37	185170-38
Your Reference	UNITS	6332/DUP101	6332/DUP102
Depth		-	-
Date Sampled		13/02/2018	13/02/2018
Type of sample		soil	soil
Date prepared	-	15/02/2018	15/02/2018
Date analysed	-	15/02/2018	15/02/2018
Arsenic	mg/kg	<4	12
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	9	8
Copper	mg/kg	24	10
Lead	mg/kg	26	13
Mercury	mg/kg	<0.1	3.5
Nickel	mg/kg	12	3
Zinc	mg/kg	28	89

Moisture						
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106
Depth		0.15	1.5	0.2	0.5	0.25
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
Moisture	%	11	23	13	9.0	9.5

Moisture						
Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
Your Reference	UNITS	6332/BH106	6332/BH107	6332/BH109	6332/BH110	6332/BH110
Depth		0.4	0.1	0.1	0.05	0.60.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
Moisture	%	16	7.3	8.6	2.3	2.5

Moisture			
Our Reference		185170-37	185170-38
Your Reference	UNITS	6332/DUP101	6332/DUP102
Depth		-	-
Date Sampled		13/02/2018	13/02/2018
Type of sample		soil	soil
Date prepared	-	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018
Moisture	%	9.7	2.6

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>

Method ID	Methodology Summary
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10).	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/02/2018	1	15/02/2018	15/02/2018		15/02/2018	
Date analysed	-			19/02/2018	1	19/02/2018	19/02/2018		19/02/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	104	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	104	
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	116	
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	101	
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	88	
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	108	
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	95	
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	105	1	99	102	3	104	

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	33	15/02/2018	15/02/2018			[NT]
Date analysed	-			[NT]	33	19/02/2018	19/02/2018			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	33	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	33	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-016	[NT]	33	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-016	[NT]	33	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-016	[NT]	33	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-016	[NT]	33	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-016	[NT]	33	<1	<1	0		[NT]
naphthalene	mg/kg	1	Org-014	[NT]	33	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	33	105	110	5		[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]	
Date extracted	-			14/02/2018	1	15/02/2018	15/02/2018		14/02/2018		
Date analysed	-			18/02/2018	1	18/02/2018	18/02/2018		18/02/2018		
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	108		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	92		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	123		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	108		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	92		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	123		
Surrogate o-Terphenyl	%		Org-003	82	1	79	79	0	85		

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	33	15/02/2018	15/02/2018			[NT]
Date analysed	-			[NT]	33	18/02/2018	18/02/2018			[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	33	<50	<50	0		[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	33	<100	<100	0		[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	33	<100	<100	0		[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	33	<50	<50	0		[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	33	<100	<100	0		[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	33	<100	<100	0		[NT]
Surrogate o-Terphenyl	%		Org-003	[NT]	33	83	83	0		[NT]

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/02/2018	1	15/02/2018	15/02/2018		15/02/2018	
Date analysed	-			16/02/2018	1	16/02/2018	16/02/2018		16/02/2018	
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	92	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	0.1	<0.1	0	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	97	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	0.8	0.6	29	97	
Anthracene	mg/kg	0.1	Org-012	<0.1	1	0.2	0.1	67	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	1.3	0.8	48	97	
Pyrene	mg/kg	0.1	Org-012	<0.1	1	1.3	0.8	48	97	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	0.5	0.3	50	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	1	0.7	0.4	55	115	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	0.9	0.6	40	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	0.53	0.3	55	89	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	0.3	0.2	40	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	0.3	0.2	40	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	94	1	97	92	5	91	

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	33	15/02/2018	15/02/2018			[NT]
Date analysed	-			[NT]	33	16/02/2018	16/02/2018			[NT]
Naphthalene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-012	[NT]	33	0.3	0.2	40		[NT]
Anthracene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-012	[NT]	33	0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	[NT]	33	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	[NT]	33	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-012	[NT]	33	85	86	1		[NT]

QUALITY CO	ONTROL: Organo	chlorine I	Pesticides in soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/02/2018	1	15/02/2018	15/02/2018		15/02/2018	
Date analysed	-			16/02/2018	1	16/02/2018	16/02/2018		16/02/2018	
НСВ	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
alpha-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	99	
gamma-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	78	
Heptachlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	70	
delta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	91	
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	85	
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	98	
Dieldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	86	
Endrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	84	
pp-DDD	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	65	
Endosulfan II	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	81	
Methoxychlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-005	98	1	98	93	5	101	

QUALITY C	ONTROL: Organo	chlorine l	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	33	15/02/2018	15/02/2018			[NT]
Date analysed	-			[NT]	33	16/02/2018	16/02/2018			[NT]
НСВ	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
alpha-BHC	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-005	[NT]	33	96	95	1		[NT]

QUALITY CONT	ROL: Organ	ophospho	orus Pesticides			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/02/2018	1	15/02/2018	15/02/2018		15/02/2018	
Date analysed	-			16/02/2018	1	16/02/2018	16/02/2018		16/02/2018	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	98	
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Dichlorvos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	88	
Dimethoate	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	107	
Fenitrothion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	93	
Malathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	116	
Parathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	92	
Ronnel	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	98	
Surrogate TCMX	%		Org-008	98	1	98	93	5	101	

QUALITY CONT	ROL: Organ	ophospho	orus Pesticides			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	33	15/02/2018	15/02/2018			[NT]
Date analysed	-			[NT]	33	16/02/2018	16/02/2018			[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0		[NT]
Dichlorvos	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-008	[NT]	33	96	95	1		[NT]

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			15/02/2018	1	15/02/2018	15/02/2018		15/02/2018	[NT]
Date analysed	-			15/02/2018	1	15/02/2018	15/02/2018		15/02/2018	[NT]
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	102	[NT]
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	99	[NT]
Chromium	mg/kg	1	Metals-020	<1	1	8	6	29	101	[NT]
Copper	mg/kg	1	Metals-020	<1	1	35	29	19	101	[NT]
Lead	mg/kg	1	Metals-020	<1	1	28	27	4	97	[NT]
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	91	[NT]
Nickel	mg/kg	1	Metals-020	<1	1	14	14	0	94	[NT]
Zinc	mg/kg	1	Metals-020	<1	1	26	25	4	97	[NT]

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	33	15/02/2018	15/02/2018		[NT]	
Date analysed	-			[NT]	33	15/02/2018	15/02/2018		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	33	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	33	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	33	4	4	0	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	33	4	4	0	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	33	75	77	3	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	33	0.2	0.3	40	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	33	5	4	22	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	33	9	11	20	[NT]	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	4	15/02/2018	15/02/2018		[NT]	
Date analysed	-			[NT]	4	15/02/2018	15/02/2018		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	4	13	11	17	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	4	3	2	40	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	4	29	30	3	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	4	860	880	2	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	4	1700	1800	6	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	4	0.5	0.4	22	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	4	25	31	21	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	4	1200	1300	8	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	32	15/02/2018	15/02/2018		[NT]	
Date analysed	-			[NT]	32	15/02/2018	15/02/2018		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	32	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	32	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	32	9	11	20	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	32	8	9	12	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	32	32	44	32	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	32	1.7	1.8	6	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	32	3	3	0	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	32	40	39	3	[NT]	

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	38	15/02/2018	15/02/2018		[NT]	
Date analysed	-			[NT]	38	15/02/2018	15/02/2018		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	38	12	12	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	38	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	38	8	8	0	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	38	10	10	0	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	38	13	15	14	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	38	3.5	3.3	6	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	38	3	3	0	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	38	89	97	9	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 185170 Page | 24 of 25

Report Comments

PAHs in Soil 1/1d: - The RPD for duplicate results is accepted due to the non homogenous nature of the sample/s.

Envirolab Reference: 185170
Revision No: R00
Page | 25 of 25

SOIL ANALYSIS CHAIN OF CUSTODY FORM

					Additional Testing	g					
Name	P170633	P1706332 - 119 Barton St, Monterey DSI	n St, Mon	terey DSI							
Martens Contact Officer	Robert A	Robert Mehaffey				Contact Email		rmehaffey@martens.com.au	rtens.com.au		
	Sample Date	Date	13 Feb	13 February 2018	Dispatch Date	14 February 2018		Turnaround Time	Ð	standard	
Sampling and Shipping	Our Reference	erence	P1706	P1706332COC01V01		Shipping Method (X)	ethod	Hand	Post	ŏ	Courier
	On Ice (X)	(x	×	No Ice (X)	Other (X)	(x)					
					Laboratory						
Name	EnviroLab	qp									
Sample Delivery Address	12 Ashle	12 Ashley Street, Chatswood	hatswoc	p							
Delivery Contact	Name	Aileen		Phone	9910 6200	Fax		Email	ahie@envirolabservices.com.au	bservices.c	om.au
Please Send Report By (X)	Post		Fax	Email	X Reportin	Reporting Email Address		ffey@martens.a	rmehaffey@martens.com.au, gtaylor@martens.com.au	@martens.c	com.au

*	8HM BTEX	IKH
		×
		×
×	Envirelab Services	
	12 Ashley St	×
	Charkwood NSW 200	×
		×
	Job No. 1851	×
	31.7.118	×
	Date Received: 1, u.S.	
	Time Received: 10 10 C	
	Received by: Je	×
	Termi: Cool/Amblent	×
	Cooling Ice/Icepack	×
	Consulty: Intact/Broken/None	×
		×
		×
		×

Reci ELS JE 19218 11:45

Head Office Suite 201, Level 2, 20 George Street Homsby NSW 2077, Australia Ph 02 9476 9999 Fax 02 9476 8767

> mail@martens.com.au > www.martens.com.au MARTENS & ASSOCIATES P/L ABN 85 070 240 890 ACN 070 240 890

185170 SOIL ANALYSIS CHAIN OF CUSTODY

Page of

Sample ID	Combo 5b	8HM	BTEX	TRH	HOLD
6332/BH107/0.1	×				
22 6332/BH107/0.3-0.4					×
					×
24 6332/BH107/1.45					×
2.\$ 6332/BH108/0.05					×
					×
27 6332/BH108/0.6					×
6332/BH109/0.1	×				
29 6332/BH109/0.25					×
6332/BH109/0.5					×
6332/BH109/1.0 -					×
6332/BH110/0.05	×				
6332/BH110/0.6	×				
6332/BH110/0.8					×
6332/55101					×
6332/55102		Y Y			×
33 6332/DUP101		×			
6332/DUP102		×			
39 Trip Blank			1 m	×	
7 Trip Spike			×		

Rec: JE 14/2/18

BH105/2.0 Extra 41

Aileen Hie

Robert Mehaffey <rmehaffey@martens.com.au> From:

Wednesday, 21 February 2018 2:40 PM Sent:

To: Ken Nguyen

Gray Taylor; Aileen Hie Cc:

RE: Results for Registration 185170 P1706332 - 119 Barton St Monterey DSI Subject:

Attachments: 185170-coc.pdf

Hi Ken,

Can we please get some additional testing completed:

5 o 6332/BH101/2.0 - Tested for Combo 5b

Standard turnaround time please.

Let me know if there are any issues.

Best regards,

Robert Mehaffey **Environmental Engineer**

Martens & Associates Pty Ltd Suite 201, 20 George St Hornsby, NSW 2077 P + 61 2 9476 9999 F + 61 2 9476 B767 www.martens.com.au

Envirolab Ref: 185170A Due: 28/2/18

Std TIA.

From: Ken Nguyen [mailto:KNguyen@envirolab.com.au]

Sent: Tuesday, 20 February 2018 8:00 PM To: Lara Tintinger; Robert Mehaffey; Gray Taylor

Subject: Results for Registration 185170 P1706332 - 119 Barton St Monterey DSI

Please refer to attached for:

a copy of the Certificate of Analysis

a copy of the COC/paperwork received from you

ESDAT Extracts

an Excel or .csv file containing the results

a copy of the Invoice

Please note that a hard copy will not be posted.

We have a new reporting format and would welcome your feedback. Sydney@envirolab.com.au

Enquiries should be made directly to: customerservice@envirolab.com.au

ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 185170-A

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Robert Mehaffey
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1706332 - 119 Barton St Monterey DSI
Number of Samples	Additional Testing on 1 Soil
Date samples received	14/02/2018
Date completed instructions received	21/02/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	28/02/2018	
Date of Issue	26/02/2018	
NATA Accreditation Number 2901. Th	is document shall not be reproduced except in full.	
Accredited for compliance with ISO/IE	Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Dragana Tomas, Senior Chemist Long Pham, Team Leader, Metals Steven Luong, Senior Chemist **Authorised By**

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date extracted	-	22/02/2018
Date analysed	-	22/02/2018
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	99

Envirolab Reference: 185170-A

svTRH (C10-C40) in Soil		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date extracted	-	22/02/2018
Date analysed	-	23/02/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	77

Envirolab Reference: 185170-A

PAHs in Soil		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date extracted	-	22/02/2018
Date analysed	-	22/02/2018
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	97

Envirolab Reference: 185170-A

Organochlorine Pesticides in soil		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date extracted	-	22/02/2018
Date analysed	-	23/02/2018
нсв	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	94

Organophosphorus Pesticides		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date extracted	-	22/02/2018
Date analysed	-	23/02/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Ethion	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Surrogate TCMX	%	94

Envirolab Reference: 185170-A

Acid Extractable metals in soil		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date prepared	-	22/02/2018
Date analysed	-	22/02/2018
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	2
Copper	mg/kg	11
Lead	mg/kg	30
Mercury	mg/kg	<0.1
Nickel	mg/kg	<1
Zinc	mg/kg	16

Envirolab Reference: 185170-A

Moisture		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date prepared	-	22/02/2018
Date analysed	-	22/02/2018
Moisture	%	5.7

Envirolab Reference: 185170-A

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>

Envirolab Reference: 185170-A

Method ID	Methodology Summary
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Envirolab Reference: 185170-A

QUALITY CON	ITROL: vTRH	(C6-C10).	/BTEXN in Soil			Du	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Date analysed	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	106	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	106	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	111	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	108	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	99	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	105	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	96	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	110	[NT]		[NT]	[NT]	105	

Envirolab Reference: 185170-A

QUALITY CO	Duplicate			Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Date analysed	-			23/02/2018	[NT]		[NT]	[NT]	23/02/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	120	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	97	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	120	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	97	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-003	82	[NT]		[NT]	[NT]	90	

QUA			Duplicate			Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Date analysed	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	113	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	125	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	109	
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	111	
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	118	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	114	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]		[NT]	[NT]	113	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	104	[NT]		[NT]	[NT]	124	

Envirolab Reference: 185170-A

QUALITY CONTROL: Organochlorine Pesticides in soil						Dι	ıplicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018		
Date analysed	-			23/02/2018	[NT]		[NT]	[NT]	23/02/2018		
нсв	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	85		
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	88		
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	94		
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	89		
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	95		
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	103		
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	106		
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	96		
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	124		
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	105		
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-005	97	[NT]		[NT]	[NT]	113		

Envirolab Reference: 185170-A

QUALITY CON	Du	plicate	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Date analysed	-			23/02/2018	[NT]		[NT]	[NT]	23/02/2018	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	103	
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	
Dichlorvos	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	106	
Dimethoate	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	112	
Fenitrothion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	114	
Malathion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	110	
Parathion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	118	
Ronnel	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	115	
Surrogate TCMX	%		Org-008	97	[NT]		[NT]	[NT]	102	

Envirolab Reference: 185170-A

QUALITY CONT		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Date analysed	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	108	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	99	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	106	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	111	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	104	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	108	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Mater Cuidelines recommend that Thermetelerant Coliform, Faceal Enterescopic & F. Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 185170-A Page | 18 of 18

Aileen Hie

From:

Robert Mehaffey <rmehaffey@martens.com.au>

Sent:

Friday, 16 February 2018 3:29 PM

To:

Aileen Hie

Cc:

Gray Taylor

Subject:

RE: 6332 COC

Attachments:

P1706332JCOC01V01.pdf

Hi Aileen,

Could we please also get the following additional testing completed for these samples:

12 o 6332/BH103/1.1 - tested for CEC and pH.

100 6332/BH106/0.65 - tested for CEC and pH.

6332/BH110/0.8 - tested for CEC and pH.

Please let me know If there are any issues.

Best regards,

Envirolab Ref: 185170 B

Due: 28/2/18

Robert Mehaffey **Environmental Engineer**

Martens & Associates Pty Ltd Suite 201, 20 George St Hornsby, NSW 2077 P + 61 2 9476 9999 F + 61 2 9476 8767 www.martens.com.au

From: Robert Mehaffey

Sent: Tuesday, 13 February 2018 3:37 PM

To: 'Aileen Hie' Cc: Gray Taylor Subject: 6332 COC

Hi Aileen,

Please find attached COC for job P6332, samples will be sent to Envirolab tomorrow morning.

Let me know if there are any issues.

Best regards,

Robert Mehaffey **Environmental Engineer** BEng (Civil/Environmental)

Envirolab Services Pty Ltd ABN 37 112 535 645 aley St Chatswood NSW 2067

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 185170-B

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Robert Mehaffey
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1706332 - 119 Barton St Monterey DSI
Number of Samples	Additional Testing on 3 Soils
Date samples received	14/02/2018
Date completed instructions received	16/02/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	28/02/2018
Date of Issue	28/02/2018
NATA Accreditation Number 2901. Th	is document shall not be reproduced except in full.
Accredited for compliance with ISO/IE	C 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Leon Ow, Chemist

Nick Sarlamis, Inorganics Supervisor

Authorised By

David Springer, General Manager

Envirolab Reference: 185170-B Revision No: R00

CEC				
Our Reference		185170-B-12	185170-B-20	185170-B-34
Your Reference	UNITS	6332/BH103	6332/BH106	6332/BH110
Depth		1.1	0.65	0.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil
Date prepared	-	27/02/2018	27/02/2018	27/02/2018
Date analysed	-	27/02/2018	27/02/2018	27/02/2018
Exchangeable Ca	meq/100g	<0.1	0.3	0.3
Exchangeable K	meq/100g	<0.1	<0.1	<0.1
Exchangeable Mg	meq/100g	<0.1	<0.1	<0.1
Exchangeable Na	meq/100g	<0.1	<0.1	<0.1
Cation Exchange Capacity	meq/100g	<1	<1	<1

Envirolab Reference: 185170-B

Misc Inorg - Soil				
Our Reference		185170-B-12	185170-B-20	185170-B-34
Your Reference	UNITS	6332/BH103	6332/BH106	6332/BH110
Depth		1.1	0.65	0.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil
Date prepared	-	27/02/2018	27/02/2018	27/02/2018
Date analysed	-	27/02/2018	27/02/2018	27/02/2018
pH 1:5 soil:water	pH Units	5.3	7.2	6.8

Envirolab Reference: 185170-B

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.

Envirolab Reference: 185170-B

QUA	ALITY CONT	ROL: CE	:C			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			27/02/2018	[NT]		[NT]	[NT]	27/02/2018	
Date analysed	-			27/02/2018	[NT]		[NT]	[NT]	27/02/2018	
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	105	
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	113	
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	102	
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	107	

Envirolab Reference: 185170-B

QUALITY	CONTROL:	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			27/02/2018	[NT]		[NT]	[NT]	27/02/2018	
Date analysed	-			27/02/2018	[NT]		[NT]	[NT]	27/02/2018	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	103	

Envirolab Reference: 185170-B

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & F. Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Envirolab Reference: 185170-B Revision No: R00

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 185170-B Page | 8 of 8

19 Attachment H – Laboratory Summary Tables

		United and a second sec	Halogenated Benzenes Organochlorine Pesticides														Organophosphorous Pesticides																	
		Halogenated Benzenes	\vdash							_	Organ	ochlorii	ne Pesti	cides		_			_			_	_				anopho	sphoro	as Pesti	cides	_		_	Pesticides
		Hexachlorobenzene	4,4-DDE	а-внс	Aldrin	b-BHC	Chlordane (cis)	Chlordane (trans)	d-BHC	QQQ	тоо	DDT+DDE+DDD	Dieldrin	Endosulfan I	Endosulfan II	Endosul fan sul phate	Endrin	Endrin aldehyde	g-BHC (Lin dane)	Heptachlor	Heptachlor epoxide	Methoxychlor	Azin ophos me thyl	Bromophos-ethyl	Chlorpyrifos	Chlorpyrifos-methyl	Diazinon	Dichloros	Dimethoate	Ethion	Fenitrothion	Malathion	Ronnel	Parathion
		mg/kg		mg/kg			mg/kg		mg/kg	mg/kg	mg/kg		mg/kg	mg/kg		mg/kg								mg/kg					mg/kg			mg/kg	mg/kg	mg/kg
EQL		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table 1A(1) HILs Res A Soil		10										240					10			6		300			160									
Site Specific EIL											180																							
Field_ID	Sample_Depth_Avg																																	
6332/BH101	0.15	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
6332/BH101	1.5	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
6332/BH101	2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
6332/BH103	0.2	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
6332/BH103	0.5	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
6332/BH106	0.25	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
6332/BH106	0.4	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1		<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
6332/BH107	0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
6332/BH109	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
6332/BH110	0.05	< 0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
6332/BH110	0.6	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1		<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Statistical Summary																																		
Number of Results		11	11	11	11		11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11		11	11	11	11		11	11	11
Number of Detects		0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration		<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1			<0.1		< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1			<0.1	<0.1
Minimum Detect		ND	0.2	ND	ND	ND	ND	ND	ND	ND	ND	0.2	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration		<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Detect		ND	0.2	ND	ND	ND	ND	ND	ND	ND	ND	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Concentration		0.05	0.064	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.064	0.05	0.05	0.05	0.05	0.05		0.05		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Median Concentration		0.05		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Standard Deviation		0	0.045	0	0	0	0	0	0	0	0	0.045	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Det	tects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	BTEX PAH/Phenois														TPH																		
																	\vdash				TP	-		_	_	\dashv							
		3enzene	t hylbenzene	Toluene	(ylene (m & p)	(o)	(ylene Total	26-C10 less BTEX(F1)	Acenaphthene	Acenaphthylene	Anthracene	3enz(a)anthracene	Зепzo(a) pyrene	3erzo(g,h,i)perylene	Chrysene	Olbenz(a,h)anthracene	Carcinogenic PAHs (as B(a)P TPE)	fluoranthene	luorene	ndeno(1,2,3-c,d)pyrene	Vaphthalene	Phenanthrene	yrene	210-016	16-34	34-040	2-NAPHTHALENE	69-93	10 - C14	15-228	29-G6	210 - C40 (Sum of total)	26-C10
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg n	ng/kg m	g/kg
EQL		0.2	1	0.5	2	1	1	25	0.1	0.1	0.1	0.1	0.05	0.1	0.1	0.1		0.1	0.1	0.1	0.1	0.1	0.1	50	100	100	50	25	50	100	100	50	25
NEPM 2013 Table 1A(1) HILs Res A Soil																	3																
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand																																	\neg
0-1m		0.5	55	160			40	45													3						110				-		\neg
1-2m		0.5	NL	220			60	70													NL						240						\neg
2-4m		0.5	NL	310			95	110													NL						440						\neg
>4m		0.5	NL	540			170	200													NL						NL						
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil																																	
0-2m		50	70	85			105	180					0.7												300	2800	120						
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil																								1000	2500	10000						\neg	700
Site Specific EIL																					170												
																																	_
Field_ID	Sample_Depth_Avg																																
6332/BH101	0.15	< 0.2		< 0.5	<2	<1	<1	<25	0.1	< 0.1	0.2	0.5	0.53	0.3	0.7	< 0.1	0.67	1.3	< 0.1	0.3	< 0.1	0.8	1.3	<50	<100	<100	<50	<25	<50	<100	<100		<25
6332/BH101	1.5	< 0.2	<1	<0.5	<2	<1	<1	<25	< 0.1	0.5	0.8	2.3	3.1	2.9		0.4	4.051	8.3	0.2	2.6	< 0.1	4.3	7.9	<50	240	<100	<50	<25	<50	140			<25
6332/BH101	2	< 0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	<0.05	< 0.1	< 0.1	< 0.1	< 0.172	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50 4	<25
6332/BH103	0.2	< 0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	0.2	< 0.05	< 0.1	0.2	< 0.1	0.1025	0.3	< 0.1	< 0.1	< 0.1	0.3	0.3	<50	260	<100	<50	<25	<50	170	140	260	<25
6332/BH103	0.5	< 0.2	<1	<0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	<0.05	< 0.1	< 0.1	< 0.1	< 0.172	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<50	<100	<100	<50	<25	<50	<100			<25
6332/BH106	0.25	< 0.2	<1	<0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	<0.05	< 0.1	< 0.1	< 0.1	< 0.172	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<50	<100	<100	<50	<25	<50	<100			<25
6332/BH106	0.4	<0.2	<1	<0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	0.1	< 0.05	< 0.1	0.2	< 0.1	0.0925	0.3	< 0.1	< 0.1	<1-0.1		0.2	<50	<100	<100	<50	<25	<50	<100	<100		<25
6332/BH107	0.1	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	<0.05	< 0.1	< 0.1	< 0.1	<0.172	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<50	<100	<100	<50	<25	<50	<100			<25
6332/BH109	0.1	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	<0.05	< 0.1	< 0.1	< 0.1	<0.172	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<50	<100	<100	<50	<25	<50	<100			<25
6332/BH110	0.05	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	<0.05	< 0.1	< 0.1	< 0.1	<0.172	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<50	<100	<100	<50	<25	<50	<100			<25
6332/BH110	0.6	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	<0.05	< 0.1	< 0.1	< 0.1	< 0.172	0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
Statistical Summary																																	
Number of Results		11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
Number of Detects		0	0	0	0	0	0	0	1	1	2	4	2	2	4	1	4	5	1	2	1	5	4	0	2	0	0	0	0	2	2		0
Minimum Concentration		<0.2	<1	<0.5	<2	<1	<1	<25	<0.1	<0.1		<0.1		<0.1	<0.1		0.0925	<0.1	< 0.1		< 0.1	<0.1		<50	<100	<100	<50	<25	<50				<25
Minimum Detect		ND	NĐ	ND	ND	ND	ND	ND	0.1	0.5	0.2	0.1	0.53	0.3	0.2	0.4	0.0925	0.1	0.2	0.3	ND	0.3	0.2	ND	240	ND	ND	ND	ND	140			ND
Maximum Concentration		<0.2	<1	<0.5	<2	<1	<1	<25	0.1	0.5	0.8	2.3	3.1	2.9	3.2	0.4	4.051	8.3	0.2	2.6	0.1	4.3	7.9	<50	260	<100	<50	<25	<50	170	140	260	<25
Maximum Detect		ND	NĐ	ND	ND	ND	ND	ND	0.1	0.5	0.8	2.3	3.1	2.9	3.2	0.4	4.051	8.3	0.2	2.6	0.1	4.3	7.9	ND	260	ND	ND	ND	ND	170	140	260	ND
Average Concentration		0.1	0.5	0.25	1	0.5	0.5	13	0.055	0.091	0.13	0.31	0.35	0.33	0.42	0.082	0.5	0.96	0.064	0.3	0.073	0.6	0.91	25	86	50	25	13	25	69	65	66	13
Median Concentration		0.1	0.5	0.25	1	0.5	0.5	12.5	0.05	0.05	0.05	0.05	0.025	0.05	0.05	0.05	0.086	0.05	0.05	0.05	0.05	0.05	0.05	25	50	50	25	12.5	25	50	50		12.5
Standard Deviation		0	0	0	0	0	0	0	0.015	0.14		0.67	0.92	0.86	0.94	0.11	1.2	2.5	0.045	0.77	0.075	1.3	2.3	0	81	0	0	0	0	43	33		0
Number of Guideline Exceedances		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		_	_	_	_	_	_	_	_	_	_	_		_	_	_		_		_		_	_	_	_			_	_	-	-	-	-

113	Lead Metals								
g engineers	Lead	Arsenic	Cadmium	Chromium (III+VI)	Copper	Mercury	Nickel	Zinc	
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
EQL	1	4	0.4	1	1	0.1	1	1	
NEPM 2013 Table 1A(1) HILs Res A Soil	300	100	20		6000	40	400	7400	
Site Specific EIL	1100	100		410	55		35	350	

Field_ID	Sample_Depth_Avg								
6332/BH101	0.15	28	<4	< 0.4	8	35	< 0.1	14	26
6332/BH101	1.5	1700	13	3	29	860	0.5	25	1200
6332/BH101	2	30	<4	<0.4	2	11	<0.1	<1	16
6332/BH103	0.2	15	<4	<0.4	6	57	<0.1	21	12
6332/BH103	0.5	1	<4	<0.4	<1	1	<0.1	<1	<1
6332/BH106	0.25	4	<4	<0.4	2	3	0.2	4	6
6332/BH106	0.4	19	<4	< 0.4	6	15	< 0.1	46	15
6332/BH107	0.1	1	<4	<0.4	7	<1	<0.1	1	5
6332/BH109	0.1	3	<4	<0.4	5	2	<0.1	2	17
6332/BH110	0.05	32	<4	<0.4	9	8	1.7	3	40
6332/BH110	0.6	75	<4	<0.4	4	4	0.2	5	9

Statistical Summary

11	11	11	11	11	11	11	11
11	1	1	10	10	4	9	10
1	<4	<0.4	<1	<1	<0.1	<1	<1
1	13	3	2	1	0.2	1	5
1700	13	3	29	860	1.7	46	1200
1700	13	3	29	860	1.7	46	1200
173	3	0.45	7.1	91	0.27	11	122
19	2	0.2	6	8	0.05	4	15
507	3.3	0.84	7.7	256	0.49	14	358
1	0	0	0	2	0	1	1
1	0	0	0	2	0	1	1
	11 1 1 1700 1700 173 19	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 1 1 10 1 <4	11 1 1 10 10 1 <4	11 1 1 10 10 4 1 <4	11 1 1 10 10 4 9 1 <4

20 Attachment I – UCL Calculations

	Α	В	С	D	E	F	G	Н		J	K	L
1				(amma UCL	Statistics for	Uncensored	Full Data Se	ts			
2				T								
3			cted Options		1=10010010							
4	Date	e/Time of Co	•			12:09:50 PM						
5			From File	WorkShee	t.xls							
6		Ful Confidence	Il Precision	OFF 95%								
7		f Bootstrap (2000								
8	Number o	т вооізпар (Ореганопъ	2000								
9												
10	C0											
11 12												
13						General	Statistics					
14			Total	Number of	Observation	ns 10			Numbe	er of Distinct C	bservations	9
15									Numbe	r of Missing C	bservations	0
16					Minimu	m 1					Mean	13.7
17					Maximu	m 57					Median	6
18					S	D 18.37				SD of	logged Data	1.404
19				Coefficie	nt of Variation	n 1.341					Skewness	1.854
20							ı					I
21						Gamma	GOF Test					
22				A-D	Test Statist				-	Gamma GO		
23					Critical Valu		Dat	a appear Gan			-	evel
24					Test Statist					ov Gamma G		
25					Critical Valu			a appear Gan		outed at 5% S	ignificance L	evel
26				Da	ta appear G	amma Distrib	uted at 5% S	ignificance L	evel			
27						Commo	Statistics					
28					k hat (MLE		Statistics		· ·	star (bias cor	rected MLE)	0.579
29				Th	eta hat (MLE	1				star (bias cor		23.67
30					nu hat (MLE	•			mota	•	s corrected)	11.57
31			M	I F Mean (b	ias correcte	*				MLE Sd (bia	-	18.01
32				(5				Α	pproximate	e Chi Square		4.948
33			Adjus	sted Level o	f Significand	ce 0.0267				djusted Chi S		4.22
34 35			•		- '		1				· ·	<u> </u>
36					P	Assuming Gam	nma Distribu	tion				
37	9	5% Approxi	mate Gamm	a UCL (use	when n>=50	0) 32.05		95% Adjı	usted Gam	ma UCL (use	when n<50)	37.57
38						1	1					I
39						Suggested	UCL to Use					
40			95	% Adjusted	Gamma UC	CL 37.57						
41												•
42	N	Note: Sugges				5% UCL are pr		•			ate 95% UCL	
	-					ased upon dat						
43		These recor	mmondations	s are based	upon the re	sults of the sim	nulation studi	es summarize	ed in Singh	, Maichle, and	d Lee (2006).	
43 44											_	
						World data se	ts; for addition	onal insight the	e user may	want to cons	ult a statistici	an.
44							ts; for additio	onal insight the	e user may	want to cons	ult a statistici	an.

2			С	D	E	F	G	Н	ı	J	K	L
2				(Gamma UC	L Statistics fo	Uncensored	I Full Data S	ets			
3			cted Options		1=10010010							
4	Date	e/Time of Co				3 12:10:09 PM						
5		E. I	From File	WorkShee	t.xls							
6		Ful Confidence	l Precision	OFF 95%								
7		f Bootstrap (2000								
8	Number of	і Бооізпар (Sperations	2000								
9												
10	C1											
11 12												
13						Genera	Statistics					
14			Total	Number of	Observation	ons 10			Numbe	er of Distinct C	bservations	8
15									Numbe	r of Missing C	bservations	0
16					Minim	um 1					Mean	9.8
17					Maximi	um 46					Median	3.5
18					(SD 14.34				SD of	logged Data	1.36
19				Coefficie	nt of Variati	ion 1.463					Skewness	2.158
20												
21							GOF Test					
22					Test Statis				-	Gamma GO		
23					Critical Val		Dat			outed at 5% S	-	evel
24					Test Statis					ov Gamma G		
25					Critical Val					outed at 5% S	ignificance Le	evel
26				Da	ta appear (Gamma Distrib	uted at 5% S	oignificance i	_evei			
27						Gamma	Statistics					
28					k hat (ML		Otationes		k	star (bias cor	rected MLF)	0.562
29				Th	eta hat (ML	<i>'</i>				star (bias cor	•	17.43
30					nu hat (ML					,	s corrected)	11.24
31			MI	E Mean (b	ias correcte	*				MLE Sd (bia	,	13.07
33				•		*			Approximate	e Chi Square	•	4.733
34			Adjus	ted Level c	f Significan	nce 0.0267			A	djusted Chi S	quare Value	4.025
35							1					
36						Assuming Gar	nma Distribu	tion				
37	9	5% Approxi	mate Gamm	a UCL (use	when n>=	50) 23.28		95% Ad	justed Gam	ma UCL (use	when n<50)	27.38
38												
39							UCL to Use					
40			95	% Adjusted	Gamma U	CL 27.38						
41												
42	N	lote: Sugges				95% UCL are p		<u> </u>			ate 95% UCL	.
43		T1				based upon da					11 (0000)	
						esults of the sin al World data se						
44	11				1VPI 311 PC	a vvoido data ci	-is inclandific	man insidnt fr	user mav	wall to cons		
	Hov	wever, simu	iations result	5 WIII HOL CO	voi all Nea	ii wona data si	oto, for addition	mai maigni u	ic user may	want to cons	uit a statistici	ali.